Hazard Category	Description
Low Hazard area	Land areas where it is Barely Credible that a coastal process event would adversely impact the area.
Medium Hazard Area	Land areas that are Unlikely to be impacted upon by ongoing coastal processes.
High Hazard Area	Land areas where it is Likely that the areas will be impacted upon by coastal processes.
Immediate High Hazard Area	Land areas which are either comprising those areas which, at present are Almost Certain to be impacted upon by coastal processes, or are currently experiencing the impacts of coastal processes.

TABLE D2 : BLUFF AREA HAZARD LINE DEFINITIONS

Hazard Line	Description
Low / Medium Hazard Line	The line separating the low & medium hazard areas at the respective years denoted on the hazard maps / hazard lines.
Medium / High Hazard Line	The line [to be defined] separating the medium & high hazard areas. Note: The location of this line is to be determined on a lot by lot basis, utilising the relevant planning instrument, detailed topographic information and geotechnical determination of the bluff subsurface profile to AHD zero.
High / Immediate High Hazard Line	The line separating the high & immediate high hazard areas at the respective years denoted on the hazard maps / hazard lines.

Notes:

- The term 'coastal processes' in the above table includes the terms erosion, landslide / landslip, rockfall, rock de-stress and / or tidal inundation within the coastal zone. The term 'coastal processes' does NOT [in this context] include / describe other geotechnical hazards close to the coastal zone.
- 2. Any development works proposed in the Medium Hazard area should be subject to stringent development & land use controls, and secured against / designed to accommodate, the potential adverse impacts of coastal processes.
- 3. Only minor structures should be constructed in the High Hazard area. Such structures should recognise that the works may need to be demolished before 2050, or 2100 and secured against / designed to accommodate the likely adverse impacts of coastal processes.

Ref: G:\Jobbm\BM001\BM001-5\RN20100406\Appendix\Tables D1 & D2 - Bluff Area Classification.doc Page D-1

- 4. The hazard definitions in Tables D1 & D2 assume:
 - the Sea Level Rise [SLR] stated in the current NSW government policy for the Central Coast [viz: 400 mm by 2050, and 900 mm by 2100] from 1990 levels;
 - the 2010 hazard zone predictions will be reviewed within 15 years, and then amended in line with the data available at that time.
- 5. The terms Barely Credible, Unlikely, Likely and Almost Certain have the usual statistical meanings as suggested by the Australian Geomechanics Society *[AGS]*, and are defined in Appendix C to the AGS March 2007 guidelines. These terms imply the following:

Term	Indicative Annual Probability
Barely Credible	1x10 ⁻⁶
Unlikely	1x10 ⁻⁴
Likely	1x10 ⁻²
Almost Certain	1x10 ⁻¹

М

sulting Engir

rley

ز and ُ

FIGURE D3

POSSIBLE METHOD OF DEFINING MEDIUM / HIGH HAZARD INTERFACE [ON A LOT BY LOT BASIS]

AUSTRALIAN GEOGUIDE LR2 (LANDSLIDES)

LANDSLIDES

What is a Landslide?

Any movement of a mass of rock, debris, or earth, down a slope, constitutes a "landslide". Landslides take many forms, some of which are illustrated. More information can be obtained from Geoscience Australia, or by visiting its Australian Landslide Database at <u>www.ga.gov.au/urban/factsheets/landslide.jsp</u>. Aspects of the impact of landslides on buildings are dealt with in the book "Guideline Document Landslide Hazards" published by the Australian Building Codes Board and referenced in the Building Code of Australia. This document can be purchased over the internet at the Australian Building Codes Board's website <u>www.abcb.gov.au</u>.

Landslides vary in size. They can be small and localised or very large, sometimes extending for kilometres and involving millions of tonnes of soil or rock. It is important to realise that even a 1 cubic metre boulder of soil, or rock, weighs at least 2 tonnes. If it falls, or slides, it is large enough to kill a person, crush a car, or cause serious structural damage to a house. The material in a landslide may travel downhill well beyond the point where the failure first occurred, leaving destruction in its wake. It may also leave an unstable slope in the ground behind it, which has the potential to fail again, causing the landslide to extend (regress) uphill, or expand sideways. For all these reasons, both "potential" and "actual" landslides must be taken very seriously. They present a real threat to life and property and require proper management.

Identification of landslide risk is a complex task and must be undertaken by a geotechnical practitioner (GeoGuide LR1) with specialist experience in slope stability assessment and slope stabilisation.

What Causes a Landslide?

Landslides occur as a result of local geological and groundwater conditions, but can be exacerbated by inappropriate development (GeoGuide LR8), exceptional weather, earthquakes and other factors. Some slopes and cliffs never seem to change, but are actually on the verge of failing. Others, often moderate slopes (Table 1), move continuously, but so slowly that it is not apparent to a casual observer. In both cases, small changes in conditions can trigger a landslide with serious consequences. Wetting up of the ground (which may involve a rise in ground water table) is the single most important cause of landslides (GeoGuide LR5). This is why they often occur during, or soon after, heavy rain. Inappropriate development often results in small scale landslides which are very expensive in human terms because of the proximity of housing and people.

Does a Landslide Affect You?

Any slope, cliff, cutting, or fill embankment may be a hazard which has the potential to impact on people, property, roads and services. Some tell-tale signs that might indicate that a landslide is occurring are listed below:

- open cracks, or steps, along contours
- ground water seepage, or springs
- bulging in the lower part of the slope
- hummocky ground

- trees leaning down slope, or with exposed roots
- debris/fallen rocks at the foot of a cliff
- tilted power poles, or fences
- cracked or distorted structures

These indications of instability may be seen on almost any slope and are not necessarily confined to the steeper ones (Table 1). Advice should be sought from a geotechnical practitioner if any of them are observed. Landslides do not respect property boundaries. As mentioned above they can "run-out" from above, "regress" from below, or expand sideways, so a landslide hazard affecting your property may actually exist on someone else's land.

Local councils are usually aware of slope instability problems within their jurisdiction and often have specific development and maintenance requirements. <u>Your local council is the first place to make enquiries if you are responsible for</u> <u>any sort of development or own or occupy property on or near sloping land or a cliff.</u>

TABLE 1 - Slope Descriptions

Appearance	Slope Angle	Maximum Gradient	Slope Characteristics
Gentle	0°- 10°	1 on 6	Easy walking.
Moderate	10°- 18°	1 on 3	Walkable. Can drive and m anoeuvre a car on driveway
Steep	18°- 27°	1 on 2	Walkable with effort. Possible to drive straight up or down roughened concrete driveway, but cannot practically manoeuvre a car.
Very Steep	27°- 45°	1 on 1	Can only climb slope by cl utching at vegetation, rocks etc.
Extreme	45°- 64°	1 on 0.5	Need rope access to climb slope
Cliff	64°- 84°	1 on 0.1	Appears vertical. Can absei I down.
Vertical or Overhang	84°- 90±°	Infinite	Appears to o verhang. Abseiler likely to lose contact with the face.

Some typical landslides which could affect residential housing are illustrated below:

AUSTRALIAN GEOGUIDE LR2 (LANDSLIDES)

Rotational or circular slip failures (Figure 1) - can occur on moderate to very steep soil and weathered rock slopes (Table 1). The sliding surface of the moving mass tends to be deep seated. Tension cracks may open at the top of the slope and bulging may occur at the toe. The ground may move in discrete "steps" separated by long periods without movement. More rapid movement may occur after heavy rain.

Translational slip failures (Figure 2) - tend to occur on moderate to very steep slopes (Table 1) where soil, or weak rock, overlies stronger strata. The sliding mass is often relatively shallow. It can move, or deform slowly (creep) over long periods of time. Extensive linear cracks and hummocks sometimes form along the contours. The sliding mass may accelerate after heavy rain.

Wedge failures (Figure 3) - normally only occur on extreme slopes, or cliffs (Table 1), where discontinuities in the rock are inclined steeply downwards out of the face.

Rock falls (Figure 3) - tend to occur from cliffs and overhangs (Table 1).

Cliffs may remain apparently unchanged for hundreds of years. Collections of boulders at the foot of a cliff may indicate that rock falls are ongoing. Wedge failures and rock falls do not "creep". Familiarity with a particular local situation can instil a false sense of security since failure, when it occurs, is usually sudden and catastrophic.

Debris flows and mud slides (Figure 4) - may occur in the foothills of ranges, where erosion has formed valleys which slope down to the plains below. The valley bottoms are often lined with loose eroded material (debris) which can "flow" if it becomes saturated during and after heavy rain. Debris flows are likely to occur with little warning; they travel a long way and often involve large volumes of soil. The consequences can be devastating.

Small scale landslide Medium scale landslide

Figure 4

More information relevant to your particular situation may be found in other Australian GeoGuides:

			•			
•	GeoGuide LR1	- Introduction	•	•	GeoGuide LR7	- Landslide Risk
٠	GeoGuide LR3	- Soil Slopes	•	•	GeoGuide LR8	- Hillside Construction
٠	GeoGuide LR4	- Rock Slopes	•	•	GeoGuide LR9	- Effluent & Surface Water Disposal
٠	GeoGuide LR5	- Water & Drainage	•	•	GeoGuide LR10	- Coastal Landslides
•	GeoGuide LR6	 Retaining Walls 	•	•	GeoGuide LR11	- Record Keeping

LANDSLIDES IN SOIL

Landslides occur on soil slopes and the consequences can include damage to property and loss of life. Soil slopes exist in all parts of Australia and can even occur in places where rock outcrops can be seen on the surface. If you live on, or below, a soil slope it is important to understand why a landslide might occur and what you can do to reduce the risk it presents.

It is always worth asking the question "why is this slope here?", because the answer often leads to an understanding of what might happen in the future. Slopes are usually formed by weathering (breakdown) and erosion (physical movement) of the natural ground - the "parent material". Many factors are involved including rain, wind, chemical change, temperature variation, plant growth, animal activity and our own human enthusiasm for development. The general process is outlined in Figure 1.

The upper levels of the parent material progressively weather over thousands, or millions, of years, losing strength. This can result in a surface layer which looks similar to the parent material (although its colour has probably changed) but has the strength of a soil - this is called "residual soil". At some stage the weathered surface layer is exposed to the elements and fragments are transported down the slope. In this context a fragment could be a single sand grain, a boulder, or a landslide. The time scale could be anything from a few seconds to many thousands of years. The transported fragments often collect on the lower slopes and form a new soil layer that blankets the original slope - "colluvium". If material reaches a river or the sea it is deposited as "alluvium" or as a "marine deposit". With appropriate changes in river and sea level this material can again find itself on the surface to commence another cycle of weathering and erosion. In places often, but not only, near the coast, this can include sand sized fragments which form beaches and are sometimes blown back onto the land to form dunes.

Landslides can occur almost anywhere on a soil slope. Slides can be rotational, translational, or debris flows (see GeoGuide LR2) and may have a number of causes.

Figure 2

Figure 3

Some of the more common causes of landslides in soil are:

- Falls of the parent material or residual soil from above, due to natural weathering processes (Figure 2). 1)
- 2) Increased moisture content and consequent softening of the soil, or a rise in the water table. These can be due to excessive tree clearance, ill-considered soak-away drainage or septic systems, or heavy rainfall (Figure 2).
- Excavation without adequate support, increased surface load from fill placement, or inadequately designed 3) shallow foundations (Figure 3).
- 4) Natural erosion at the toe of the slope due to scour by a river or the sea (Figure 3).
- 5) Re-activation of an ancient landslide (Figure 3).

Most soil slopes appear stable, but they all achieved their present shape through a process of weathering and erosion and are often sensitive to minor changes in the factors that affect their stability. As a general rule, human activities only improve the situation if they have been designed to do so. Once this idea is understood, it is probably easy to see why the following basic rules are so important and should not be ignored without seeking site specific advice from a geotechnical practitioner:

- Do not clear trees unnecessarily.
- Do not cut into a slope without supporting the excavated face with an engineer designed structure.
- Do not add weight to a slope by placing earth fill or constructing buildings with inadequately designed shallow foundations (Note: in certain circumstances weight is added to the toe of a slope to inhibit landslide movement, but this must be carried out in accordance with a proper engineering design).
- Do not allow water from storm water drains, or from septic waste or effluent disposal systems to soak into the ground where it could trigger a landslide.

More information in relation to good and poor hillside construction practice is given in GeoGuide LR8. With appropriate engineering input it is often possible to reduce the likelihood, or consequences, of a landslide and so reduce the risk to property and to life. Such measures can include the construction of properly designed storm water and sub-soil drains, surface protection (GeoGuide LR5) and retaining walls (GeoGuide LR6). Design should be undertaken by a geotechnical practitioner and will normally require local council approval.

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides GeoGuide LR4 - Landslides in Rock

.

- GeoGuide LR7 Landslide Risk
- GeoGuide LR8 Hillside Construction
- GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls

- GeoGuide LR10 Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

AUSTRALIAN GEOGUIDE LR4 (LANDSLIDES IN ROCK)

LANDSLIDES IN ROCK

Rocks have been formed by many different geological processes and may have been subjected to intense pressure, large scale distortion, extreme temperature and chemical change. As a result there are many different rock types and their condition varies enormously. Rock strength varies and is often significantly reduced by the presence of discontinuities (GeoGuide LR1). You may think that rock lasts forever, but in reality it weathers under the combined effects of water, wind, chemical change, temperature variation, plant growth and animal activity and erodes with time. Rock is often the parent material that ends up forming soil slopes (GeoGuide LR3). Inevitably different rocks have different physical and chemical characteristics and they weather and erode to form different types of soil.

Weathering can lead to landslides (GeoGuide LR2) on rock slopes. The type of landslide depends on the nature of rock, the way it has weathered and the presence or absence of discontinuities. It is hard to generalise, though normally a specific combination of discontinuities and material types will be the determining factor and these are often underground and out of sight. Typical examples are provided in the figures 1 to 4. A geotechnical practitioner can assess the landslide risk and propose appropriate maintenance measures. This often entails making geological observations over an area significantly larger than the site and a review of available background information, including records of known landslides and aerial photographs. Depending on the amount of information available, geotechnical investigation may or may not be needed. Every site is different and every site has to be assessed individually.

It is impossible to predict exactly when a landslide will occur on a rock slope, but failure is normally sudden and the consequences can be catastrophic.

Figure 4 - Wedge failure along discontinuities

If the landslide risk is assessed as being anything other that Low, or Very Low, (GeoGuide LR7) it may be possible to carry out work aimed at reducing the level of risk.

The most common options are:

- 1) Trimming the slope to remove hazardous blocks of rock.
- 2) Bolting, or anchoring, to fix hazardous blocks in position and prevent movement.
- 3) Installation of catch fences and other rockfall protection measures to limit the impact of rockfalls.
- 4) Deep drainage designed to limit changes in the ground water table (GeoGuide LR5).

Although such measures can be effective, they need inspection and on-going maintenance (GeoGuide LR11) if they are to be effective for periods equivalent to the life of a house. **Design should be undertaken by a geotechnical** It should be appreciated that it may not be viable to carry out remedial works in all circumstances: for example where the landslide is on someone else's property, where the cost is out of proportion to the value of the property, or where the risk inherent in carrying out the work is actually greater than the risk of leaving things as they are. In situations such as these, development may be considered inappropriate.

AUSTRALIAN GEOGUIDE LR4 (LANDSLIDES IN ROCK)

ROCK SLOPE HAZARD REDUCTION MEASURES

Removal of loose blocks - may be effective but, depending on rock type, ongoing erosion can result in more blocks becoming unstable within a matter of years. Routine inspection, every 5 or so years, may be required to detect this.

Rock bolts and rock anchors (Figure 5) - can be installed in the ground to improve its strength and prevent individual blocks from falling. Rock bolts are usually tightened using a torque wrench, whilst rock anchors carry higher loads and require jacking. Both can be designed to be "permanent" using stainless steel, or sheathing, to inhibit corrosion, but the cost can be up to 10 times that of the "temporary" alternative. You should inspect rock bolts and rock anchors for signs of water seepage, rusting and deterioration around the heads at least once every 5 years. If you notice any of these warning signs, have them checked by a geotechnical practitioner. It is recommended that you keep copies of design drawings and maintenance records (GeoGuide LR11) for the anchors on your site and pass them on to the new owner should you sell.

Rock fall netting, catch fences and catch pits (Figure 6) - are designed to catch or control falling rocks and prevent them from damaging nearby property. You should inspect them at least once every 5 years, and after major falls, and arrange for fallen and trapped rocks to be removed if they appear to be filling up. Check for signs of corrosion and replace steel elements and fixings before they lose significant strength.

Cut-off drains (Figure 7) - can be used to intercept surface water run-off and reduce flows down the cliff face. Suitable drains are often excavated into the rock, or constructed from mounds of concrete, or stabilised soil, depending on conditions. Drains must be laid to a fall of at least 1% so they drain adequately. Frequent inspection is needed to ensure they are not blocked and continue to function as intended.

Clear trees and large bushes (Figure 7) - from slopes since roots can prize boulders from the face increasing the landslide hazard.

Figure 7

Natural cliffs and bluffs - often present the greatest hazard and yet are easily overlooked, because they have "been there forever". They can exist above a building, road, or beach, presenting the risk of a rock falling onto whatever is below. They also sometimes support buildings with a fine view to the horizon. Cliffs should be observed frequently to ensure that they are not deteriorating. You may find it convenient to use binoculars to look for signs of exposed "fresh" rock on the face, where a recent fall has occurred, or to go to the foot of the cliff from time to time to see if debris is collecting. A thorough inspection of a cliff face is often a major task requiring the use of rope access methods and should only be undertaken by an appropriately qualified professional. If tension cracks are observed in the ground at the top of a cliff take immediate action, since they could indicate imminent failure. If you have any concerns at all about the possibility of a rock fall seek advice from a geotechnical practitioner.

More information relevant to your particular situation may be found in other Australian GeoGuides:

		• •	•		
•	GeoGuide LR1	- Introduction	•	GeoGuide LR7	- Landslide Risk
•	GeoGuide LR2	- Landslides	•	GeoGuide LR8	- Hillside Construction
•	GeoGuide LR3	 Landslides in Soil 	•	GeoGuide LR9	- Effluent & Surface Water Disposal
•	GeoGuide LR5	- Water & Drainage	•	GeoGuide LR10	- Coastal Landslides
•	GeoGuide LR6	 Retaining Walls 	•	GeoGuide LR11	- Record Keeping
The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities;					

AUSTRALIAN GEOGUIDE LR7 (LANDSLIDE RISK)

LANDSLIDE RISK

Concept of Risk

Risk is a familiar term, but what does it really mean? It can be defined as "a measure of the probability and severity of an adverse effect to health, property, or the environment." This definition may seem a bit complicated. In relation to landslides, geotechnical practitioners (GeoGuide LR1) are required to assess risk in terms of the likelihood that a particular landslide will occur and the possible consequences. This is called landslide risk assessment. The consequences of a landslide are many and varied, but our concerns normally focus on loss of, or damage to, property and loss of life.

Landslide Risk Assessment

Some local councils in Australia are aware of the potential for landslides within their jurisdiction and have responded by designating specific "landslide hazard zones". Development in these areas is often covered by special regulations. If you are contemplating building, or buying an existing house, particularly in a hilly area, or near cliffs, go first for information to your local council.

Landslide risk assessment must be undertaken by

<u>a geotechnical practitioner</u>. It may involve visual inspection, geological mapping, geotechnical investigation and monitoring to identify:

- potential landslides (there may be more than one that could impact on your site)
- the likelihood that they will occur
- the damage that could result
- the cost of disruption and repairs and
- the extent to which lives could be lost.

Risk assessment is a predictive exercise, but since the ground and the processes involved are complex, prediction tends to lack precision. If you commission a

landslide risk assessment for a particular site you should expect to receive a report prepared in accordance with current professional guidelines and in a form that is acceptable to your local council, or planning authority.

Risk to Property

Table 1 indicates the terms used to describe risk to property. Each risk level depends on an assessment of how likely a landslide is to occur and its consequences in dollar terms. "Likelihood" is the chance of it happening in any one year, as indicated in Table 2. "Consequences" are related to the cost of repairs and temporary loss of use if a landslide occurs. These two factors are combined by the geotechnical practitioner to determine the Qualitative Risk.

TABLE 2: LIKELIHOOD	TABLE	2:	LIKELIHO	DD
---------------------	-------	----	----------	----

Likelihood	Annual Probability
Almost Certain	1:10
Likely	1:100
Possible	1:1,000
Unlikely	1:10,000
Rare	1:100,000
Barely credible	1:1,000,000

The terms "unacceptable", "may be tolerated", etc. in Table 1 indicate how most people react to an assessed risk level. However, some people will always be more prepared, or better able, to tolerate a higher risk level than others.

Some local councils and planning authorities stipulate a maximum tolerable level of risk to property for developments within their jurisdictions. In these situations the risk must be assessed by a geotechnical practitioner. If stabilisation works are needed to meet the stipulated requirements these will normally have to be carried out as part of the development, or consent will be withheld.

TABLE 1: RISK TO PROPERTY

Qualitative	Qualitative Risk Significance - Geotechnical engineering requirements		
Very high	VH	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low. May be too expensive and not practical. Work likely to cost more than the value of the property.	
High	Н	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable level. Work would cost a substantial sum in relation to the value of the property.	
Moderate	М	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as possible.	
Low	L	Usually acceptable to regulators. Where treatment has been needed to reduce the risk to this level, ongoing maintenance is required.	
Very Low	VL	Acceptable. Manage by normal slope maintenance procedures.	

Risk to Life

Most of us have some difficulty grappling with the concept of risk and deciding whether, or not, we are prepared to accept it. However, without doing any sort of analysis, or commissioning a report from an "expert", we all take risks every day. One of them is the risk of being killed in an accident. This is worth thinking about, because it tells us a lot about ourselves and can help to put an assessed risk into a meaningful context. By identifying activities that we either are, or are not, prepared to engage in we can get some indication of the maximum level of risk that we are prepared to take. This knowledge can help us to decide whether we really are able to accept a particular risk, or to tolerate a particular likelihood of loss, or damage, to our property (Table 2).

In Table 3, data from NSW for the years 1998 to 2002, and other sources, is presented. A risk of 1 in 100,000 means that, in any one year, 1 person is killed for every 100,000 people undertaking that particular activity. The NSW data assumes that the whole population undertakes the activity. That is, we are all at risk of being killed in a fire, or of choking on our food, but it is reasonable to assume that only people who go deep sea fishing run a risk of being killed while doing it.

It can be seen that the risks of dying as a result of falling, using a motor vehicle, or engaging in waterrelated activities (including bathing) are all greater than 1:100,000 and yet few people actively avoid situations where these risks are present. Some people are averse to flying and yet it represents a lower risk than choking to death on food. Importantly, the data also indicate that, even when the risk of dying as a consequence of a particular event is very small, it could still happen to any one of us any day. If this were not so, no one would ever be struck by lightning.

Most local councils and planning authorities that stipulate a tolerable risk to property also stipulate a tolerable risk to life. The AGS Practice Note Guideline recommends that 1:100,000 is tolerable in newly developed areas, where works can be carried out as part of the development to limit risk. The tolerable level is raised to 1:10,000 in established areas, where specific landslide hazards may have existed for many years. The distinction is deliberate and intended to prevent the concept of landslide risk management, for its own sake, becoming an unreasonable financial burden on existing communities. Acceptable risk is usually taken to be one tenth of the tolerable risk (1:1,000,000 for new developments and 1:100,000 for established areas) and efforts should be made to attain these where it is practicable and financially realistic to do so.

TABLE	3:	RISK	то	LIFE

Risk (deaths per participant per year)	Activity/Event Leading to Death (NSW data unless noted)
1:1,000	Deep sea fishing (UK)
1:1,000 to 1:10,000	Motor cycling, horse riding , ultra-light flying (Canada)
1:23,000	Motor vehicle use
1:30,000	Fall
1:70,000	Drowning
1:180,000	Fire/burn
1:660,000	Choking on food
1:1,000,000	Scheduled airlines (Canada)
1:2,300,000	Train travel
1:32,000,000	Lightning strike

More information relevant to your particular situation may be found in other AUSTRALIAN GEOGUIDES:

•	GeoGuide LR1	- Introduction
•	GeoGuide LR2	- Landslides

- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage
- GeoGuide LR8 Hillside Construction
 GeoGuide LR9 Effluent & Surface Water Disposal
 - GeoGuide LR10 Coastal Landslides

GeoGuide LR6 - Retaining Walls

GeoGuide LR11 - Record Keeping

LANDSLIDES IN THE COASTAL ENVIRONMENT

Coastal Instability

The coast presents a particularly dynamic environment where change is often the norm. Hazards exist in relation to both cliffs and sand dunes. The coast is also the most heavily populated part of Australia and always regarded as "prime" real estate, because of the views and access to waterways and beaches.

Waves, wind and salt spray play a significant part, causing dunes to move and clifffaces to erode well above sea level. Our response is often to try to neutralise these effects by doing such things as dumping rock in the sea, building groynes, dredging, or carrying out dune stabilisation. Such works can be very effective, but ongoing maintenance is usually needed and total reconstruction may be necessary after a relatively short working life.

Of particular significance are extreme events that cause destruction on a scale that ignores our efforts at coastal protection. Records show that cliffs have collapsed, taking with them backyards which had been relied upon as a buffer between a house and the ocean. Sand dunes have also been washed away resulting in the dramatic loss of homes and infrastructure. As with most landslide issues, even though such events may be infrequent, they could happen tomorrow. It is easy to be lulled into a false sense of security on a calm day.

In coastal areas, typical landslide hazards (GeoGuides LR1 to LR4) are compounded by coastal erosion which, over time, undercuts cliffs and eventually results in failure. In the case of sand dunes, dune erosion and dune slumping have equally dramatic effects. Coastal locations are subject to particular processes relating to fluctuating water tables, inundation under storm tides and direct wave attack. Large sections of our more sandy coastline are receding under present sea conditions. The hazards are progressive and likely to be exacerbated through climate change.

Coastal Development

If you own, or are responsible for, a coastal property it is important that you understand that, where the shore line is receding, there is a greater landslide risk than would be the case on a similar site inland. The view may make the risk worthwhile, but does not reduce it.

Coastal Landslides

Coastal landslides are little different from other landslides in that the signs of failure (GeoGuides LR2) and the causes (LR3, LR4 & LR5) are largely the same. The main difference relates to the overriding influence of wave impact, tidal movement, salt spray and high winds.

Cliff failures

^{>hoto} courtesv Grea Kotze

In addition to the processes that produce cliff instability on inland cliffs, coastal cliffs are also subjected to repeated cycles of wetting and drying which can be accompanied by the expansive effect of salt crystal growth in gaps in the rocks. These processes accelerate the deterioration of coastal cliffs. At the base of cliffs, direct wave attack and the impact of boulders moved by wave action causes undercutting and hence instability of the overall face. Figure 2 of GeoGuide LR4 provides an example. Whilst the processes leading to coastal cliff collapse may take years, failure tends to be catastrophic and with little warning. In many cases, waves produced by large oceanic storms are the trigger assisted by rainfall to produce collapse. These are also the conditions in which you are more likely to be inside your home and oblivious to unusual noises or movements associated with imminent failure.

Sand dune escarpment and slope failures

An understanding of coastal processes is essential when determining beach erosion potential. Waves produced by large oceanic storms can erode beaches and cut escarpments into dunes. These may be of relatively short duration, when beach rebuilding happens after the storm, but can be a permanent feature where long term beach recession is taking place. In many locations, houses and infrastructure are sited on or immediately behind coastal dunes. After an escarpment has eroded, those assets may be lost or damaged by subsequent slumping of the dune. It is important that, on erodible coastal soils, the potential for landward incursion of an erosion escarpment is determined. Having done this, the likelihood of slope instability can be established as part of the landslide risk management process. Injury, death and structural damage have occurred around the Australian coast from collapsing sand escarpments.

AUSTRALIAN GEOGUIDE LR10 (COASTAL LANDSLIDES)

The large scale and potentially high speed of coastal erosion processes means that major civil engineering work and large cost is normally involved in their control. The installation of rock bolts (LR4), drainage (LR5), or retaining walls (LR6) on a single house site may be necessary to provide local stability, but are unlikely to withstand the attack of a large storm on a beach or cliff-line.

BUILDING NEAR CLIFFS AND HEADLANDS

Coastal cliffs and headlands exist because the rock that they are made from is able to resist erosion. Even so, cliff-faces are not immune and will continue to collapse (Figure 1) by one or other of the mechanisms shown on GeoGuide LR4. If you live on a coastal cliff, you should undertake inspection and maintenance as recommended in LR4 and the other GeoGuides, as appropriate. The top of the cliff, its face, and its base should be inspected frequently for signs of recent rock falls, opening of cracks, and heavy seepage which might indicate imminent failure. Since the sea can remove fallen rocks rapidly, inspections should be made shortly after every major storm as a matter of course. If collapses are occurring seek advice from an appropriately experienced geotechnical practitioner. Advise you local council if you believe erosion is rapid or accelerating.

Building on Coastal Dunes

Any excavation in a natural dune slope is inherently unstable and must be supported and maintained (GeoGuide LR6). Dunes are particularly susceptible to ongoing erosion by wind and wave action and extreme changes can occur in a single storm. Whilst vegetation can help to stabilise dunes in the right circumstances, unfortunately a single storm has the potential to cut well into dunes and, in some cases, remove an entire low lying dune system or shift the mouth of a river. As for cliffs, it is appropriate to observe the effects of major storms on the coastline. If erosion is causing the coastline to recede at an appreciable rate, seek advice from suitably experienced geotechnical and coastal engineering practitioners and bring it to the attention of the local council.

CLIMATE CHANGE

The coastal zone will experience the most direct physical impacts of climate change. A number of reviews of global data indicate a general trend of sea level rise over the last century of 0.1 - 0.2 metres. Current rates of global average sea level rise, measured from satellite altimeter data over the last decade, exceed 3 mm/year and are accelerating. The most authoritative and recent (at the time of writing) report on climate change (IPCC, 2007) predicts a global average sea level rise of between 0.2 and 0.8 metres by 2100, compared with the 1980 - 1999 levels (the higher value includes the maximum allowance of 0.2 m to account for uncertainty associated with ice sheet dynamics).

In addition to sea level rise, climate change is also likely to result in changes in wave heights and direction, coastal wind strengths and rainfall intensity, all of which have the capacity

to impact adversely on coastal dunes and cliff-faces. A Guideline for responding to the effects of climate change in coastal areas was published by Engineers Australia in 2004.

References

Engineers Australia 2004 'Guidelines for responding to the effects of climate change in coastal and ocean engineering." The National Committee on Coastal and Ocean Engineering , Engineers Australia , updated 2004.

IPCC (2007) Climate Change 2007: The Physical Science Basis. Summary for Policy Makers. Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).

Nielsen, A.F., Lord D.B. and Poulos, H.G. (1992). 'Dune Stability Considerations for Building Foundations', Aust. Civil Eng. Transactions CE No.2, 167-174.

More information relevant to your particular situation may be found in other Australian GeoGuides:

GeoGuide LR1 - Introduction GeoGuide LR6 - Retaining Walls GeoGuide LR2 - Landslides GeoGuide LR7 - Landslide Risk - Landslides in Soil GeoGuide LR8 - Hillside Construction GeoGuide LR3 GeoGuide LR4 - Landslides in Rock GeoGuide LR9 - Effluent & Surface Water Disposal GeoGuide LR5 - Water & Drainage GeoGuide LR11 - Record Keeping