

GOSFORD CITY COUNCIL

TURO CREEK, PRETTY BEACH FLOOD STUDY

Final Report DECEMBER 2003

GOSFORD CITY COUNCIL

TURO CREEK, PRETTY BEACH FLOOD STUDY

Final Report DECEMBER 2003

Document Amendment and Approval Record

• •

Icano	Description of Amendment	Prepared by [date]	Verified by [date]	Approved by [date]
Issue	Description of Amendment	Trepared by [date]	renned by [dute]	
1	Draft for Council Review	SWA (9/8/00)	BGP (9/8/00)	MT (11/8/00)
2	Public Exhibition Draft	SWA (26/10/00)	BGP (28/10/00)	MT (30/10/00)
3 1	Final Report	RHB (03/12/03)	But 41-2103	m) 4, 17.07

Note: This document is preliminary unless it is approved by a principal of Patterson Britton & Partners.

Document Reference: m3080swa mb031202-flood study final Time and Date Printed: 5.35 PM = 3 December 2003

level 2 104 Mount Street North Sydney 2060

Newcastle Office 8 Telford Street Newcastle East 2300 PO Box 668 Newcastle 2300

North Sydney 2059

PO Box 515

Australia

Australia

© Copyright This report has been prepared for Gosford City Council. Use of this document or passing onto others or copying, in part or in full, without the written permission of Gosford City Council is an infringement of copyright.

telephone: (02) 9957 1619 facsimile: (02) 9957 1291 reception@patbrit.com.au ABN 89 003 220 228

telephone: (02) 4928 7777 facsimile: (02) 4926 2111 mail@newcastle.patbrit.com.au

Patterson Britton& Partners Pty Ltd

consulting engineers

TABLE OF CONTENTS

GL	OSSA	ARY	G1
1	SUI	MMARY	1
2	INT	RODUCTION	3
	2.1	STUDY AREA	3
	2.2	BACKGROUND	3
	2.3	DATA	3
	2.4	ELEMENTS OF THE STUDY	4
3	HY	DROLOGIC MODELLING	5
	3.1	RAFTS HYDROLOGIC MODEL	5
	3.2	MODEL SET-UP	5
	3.3	CALIBRATION	6
	3.4	DESIGN STORM SIMULATION RESULTS	7
4	HY	DRAULIC MODELLING	8
	4.1	MOUSE MODEL	8
	4.2	MODEL SET-UP	8
		4.2.1 Detailed Survey 4.2.2 Hydrologic Data	8 8
		4.2.3 Tidal Data	8
	4.3	MODEL CALIBRATION	9
	4.4	HYDRAULIC MODELLING RESULTS	9
	4.5	SENSITIVITY ANALYSIS	11
	4.6	FLOOD PRONE PROPERTIES	11
5	CO	NCLUSIONS	12
6	REF	FERENCES	13

Page No.

TABLE OF CONTENTS

FIGURES

FIGURE 1 – FLOODPLAIN MANAGEMENT PROCESS FIGURE 2 – RAFTS SUBCATCHMENT PLAN FIGURE 3 – STUDY EXTENTS, BRIDGE, NODE AND SECTION LOCATIONS FIGURE 4 – LONGITUDINAL LONG SECTION FLOOD PROFILES FIGURE 5 – APPROXIMATE FLOOD EXTENTS AND 1% AEP FLOW VELOCITIES FIGURE 6 – HOUSE FLOOR LEVEL INUNDATION PLAN

APPENDICES

APPENDIX A - RESIDENT QUESTIONNAIRE APPENDIX B1 - HISTORICAL RECORDS - RAINFALL APPENDIX B2 - HISTORICAL RECORDS - TIDE APPENDIX B3 - HISTORICAL RECORDS - DRAINAGE APPENDIX C - RAFTS SUB-CATCHMENT PARAMETERS APPENDIX D - RAFTS OUTPUT FILES AND EXPORT HYDROGRAPHS APPENDIX E – SURVEYED BRIDGE AND CULVERT STRUCTURES APPENDIX F - SURVEYED CROSS SECTIONS AND FLOOD ELEVATIONS APPENDIX G - TIDAL SENSITIVITY ANALYSIS

GLOSSARY

Annual Exceedance Probability (AEP)	Refers to the probability or risk of a flood of a given size occurring or being exceeded in any given year.				
Average Recurrence Interval (ARI)	The expected or average frequency of a given storm event.				
Australia Height Datum (AHD)	National survey datum corresponding approximately to mean sea level				
Australian Rainfall and Runoff (AR&R)	A document produced by the Institution of Engineers, Australia which outlines methods to determine the hydrology and hydraulics of a system.				
catchment	The catchment at a particular point is the area of land which drains to that point.				
design flood / storm	A hypothetical flood / storm representing a specific likelihood of occurrence (for example the 100 year ARI storm or 1% AEP flood).				
development	Existing or proposed works which may or may not impact upon flooding. Typical works are filling of land, and the construction of roads, floodways and buildings.				
discharge	The rate of flow of water measured in terms of volume over time. It is not the velocity of flow, which is a measure of how fast the water is moving. Rather, it is a measure o how much water is moving. Discharge and flow are interchangeable terms.				
flood	Above average river or creek flows which overtop banks and inundate floodplains.				
flooding	The State Emergency Service uses the following definitions in flood warnings:				
	Minor flooding: causes inconvenience such as closing of minor roads and the submergence of low level bridges.				
	Moderate flooding: low-lying areas are inundated requiring removal of stock and/or evacuation of some houses. Main traffic bridges may be covered.				
	■ Major flooding: extensive rural areas are flooded with properties, villages and towns isolated and/or appreciable urban areas flooded.				
floodplain	Land adjacent to a river or creek which is periodically inundated due to floods up to the Probable Maximum Flood event. Floodplains are a natural formation created by the deposition of sediment during floods.				
floodplain management	The coordinated management of the risks associated with human activities that occur on the floodplain.				
flood storages	Floodplain areas which are important for the temporary storage of flood waters during a flood.				
historical flood	A flood which has actually occurred.				
hydraulic	The term given to the study of water flow in rivers, estuaries and coastal systems.				
hydrograph	A graph showing how a river or creek's discharge changes with time.				

Patterson Britton & Partners

Turo Creek Flood Study Glossary Pretty Beach hydrology The term given to the study of the rainfall-runoff process in catchments. IFD data Intensity-Frequency-Duration data is based on historical data and provides average rainfall intensities for a range of average recurrence intervals and design storm durations. management plan A clear and concise document, normally containing diagrams and maps, describing a series of actions that will allow an area to be managed in a coordinated manner to achieve defined objectives. MOUSE A hydraulic computer model used to calculate water surface profiles. peak flood level, flow or velocity The maximum flood level, flow or velocity occurring during a flood event. probable maximum flood (PMF) An extreme flood deemed to be the maximum flood likely to occur. probability A statistical measure of the likely frequency or occurrence of flooding. **Rational Method** A statistical method for use in estimating design discharges. RAFTS A rainfall and runoff computer model used to generate discharge hydrographs and estimate flows from a catchment. runoff The amount of rainfall from a catchment which actually ends up as flowing water in the river or creek. tailwater level The level in a downstream water body or control structure which influences water levels in the upstream system. The speed at which the flood waters are moving. Typically, modelled velocities in a velocity river or creek are quoted as the depth and width averaged velocity, ie. the average velocity across the whole river or creek section. water surface profile Longitudinal plans showing the flood level at any given location along a watercourse or drainage system.

1 SUMMARY

Gosford City Council commissioned Patterson Britton and Partners to undertake a flood study for the Turo Creek catchment at Pretty Beach.

The '*Floodplain Development Manual*' (1986) outlines the steps involved in the floodplain management process shown in **Figure 1**. Since no detailed flood study has previously been undertaken for the Turo Creek catchment, the first step that needs to be carried out in the floodplain management process is the Flood Study. The flood study includes detailed flood modelling for the purposes of subsequently carrying out the Floodplain Management Study and Plan.

Figure 1 – Floodplain Management Process

The floodplain management plan for the study area will address the existing, future, and residual flood and environmental problems, in accordance with the NSW Government's Flood Policy as detailed in NSW Government's *Floodplain Development Manual (1986)* and the principles of the NSW Government's draft *Floodplain Management Manual (1999)*.

Specifically, the objectives of this flood study were to:

- define flood behaviour along Turo Creek for the 20%, 5% and 1% AEP events and the PMF using hydrologic and hydraulic models;
- present the flood behaviour for Turo Creek in a clear and concise manner, including flood flows, velocities and levels for the above events.

The approach adopted for this flood study was:

- issue the residents who are adjacent to the creek and/or could be effected by flooding of Turo Creek with a questionnaire (*refer Appendix A*)
- collect and collate any relevant background information (*including questionnaires*);
- assemble and calibrate a hydrologic model of the catchment;
- undertake a detailed survey of Turo Creek;
- assemble and calibrate a hydraulic model, refine and calibrate as necessary;
- define flood flows and levels for the 20%, 5% and 1% AEP events and the Probable Maximum Flood (*PMF*);
- define flood velocities and flood extents for the 1% AEP event; and
- determine houses likely to be effected by the various flood events.

The flood study found that, especially during rarer events, flooding of the lower portions of Turo Creek is dominated by tidal influences and flooding in Brisbane Water. Floor levels of dwellings begin to become inundated in events with an average recurrence interval of 1 in 20 years (5% AEP). During the 1% AEP, it is estimated that up to 9 dwellings would be inundated above floor level. One dwelling near the outlet to Turo Creek did not have the floor level surveyed because of the refusal by the owner. It is likely that this dwelling would be adversely affected by flooding.

2 INTRODUCTION

2.1 STUDY AREA

The study area for this investigation is the Turo Creek channel from just upstream (south) of Como Parade to the outlet into Brisbane Water at Pretty Beach. Within the study area Turo Creek flows between Como Parade and Venice/High View Road, through private properties adjoining Venice Road. The study area is shown in **Figure 2**.

2.2 BACKGROUND

The catchment area of Turo Creek is approximately 44 hectares. The catchment is mostly undeveloped apart from residential developments and public reserves, which are located toward the outlet of the catchment.

The Turo Creek catchment is very steep with portions exceeding grades of 25%. Sub-vertical cliffs traverse the middle section of the catchment. During significant rainfall events water can be observed to sheet over these cliffs creating large waterfalls.

When Turo Creek passes though the residential area of Pretty Beach it divides the properties fronting Venice Road into two. To gain access to the rear of their properties residents have constructed foot bridges across the creek. It appears that many land owners have filled the overbank regions of Turo Creek to gain more useable land. However, filling the overbank regions and the construction of low pedestrian bridges and culverts, has reduced the conveyance of the creek.

This flood study will constitute the first of several steps that will be carried out in the floodplain management process to form the Floodplain Management Plan. The current flood study will define the degree of flooding, identify causes of flooding and define the existing extent and frequency of flooding within Turo Creek.

2.3 DATA

The following background data was used to undertake this study:

Topographic Maps

• Broken Bay U2782-2 (1:4000) Orthophotomap – *Central Mapping Authority*, Dept of Lands, 1987

Historical Rainfall Records (refer Appendix B1)

- Daily Rainfall Data, Woy Woy: 1974, 1988-2000 *Climate and Consultancy Section,* Bureau of Meteorology, 2000.
- Pluviometer Data, Kincumber: 1-5 Feb. 1990, 7-11 Feb. 1992, 5-9 Aug. 1998 *Manly Hydraulics Laboratory*, NSW Department of Public Works and Services, 2000.
- Pluviometer Data, Wyong: 15-18 Jan. 1988, 27 April 1 May 1988 Manly *Hydraulics Laboratory*, NSW Department of Public Works and Services, 2000.

Historical Tidal Records (refer Appendix B2)

• Brisbane Waters, Koolewong: 1-4 Feb. 1990 – *Manly Hydraulics Laboratory*, NSW Department of Public Works and Services, 2000.

Drainage Records (refer Appendix B3)

• Drainage Records, Pretty Beach – Gosford City Council, 1997.

2.4 ELEMENTS OF THE STUDY

The elements of this study include:

- *Liaison with residents*, via questionnaires and telephone communications to provide details of historic flooding and flood levels which could be used to calibrate the hydraulic model.
- *Detail field survey*, of Turo Creek, house floor levels, bridge structures and outlet structures to define the geometry of Turo Creek and create a hydraulic model.
- *Review of existing data*, to define catchment boundaries, slopes, flow lengths and other hydrologic characteristics required to develop an accurate hydrologic model.
- *Hydrologic Modelling*, establishment of RAFTS rainfall/runoff model of the Turo Creek catchment to estimate flows under existing catchment conditions for the 20%, 5% and 1% AEP events as well as the PMF event.
- *Hydraulic Modelling*, utilisation of field survey data to develop a calibrated MOUSE hydraulic model to identify flood behaviour for the 20%, 5% and 1% AEP events as well as the PMF event.
- Produce a bound report describing the methodology and results of the flood study, in accordance with the NSW Government Floodplain Development Manual and the headings outlined in the brief.

3 HYDROLOGIC MODELLING

3.1 RAFTS HYDROLOGIC MODEL

RAFTS is a non-linear rainfall/runoff program developed by WP Software, in Canberra. RAFTS can be used to estimate peak flows for catchments, using actual storm events, or design rainfall data derived from *Australian Rainfall and Runoff (AR&R) (IEAust, 1987)*.

To undertake the hydrologic modelling, a RAFTS rainfall/runoff model was established for the Turo Creek catchment. The model was used to estimate design flows under existing catchment conditions for the 1%, 5% and 20% AEP events as well as the PMF event. The model was also used to estimate flows generated from historical rainfall events which were used in the calibration of the hydraulic model. All hydrologic analyses were undertaken in accordance with AR&R. PMF estimates were derived from Bulletin 53 (*Bureau of Meteorology, 1994*).

RAFTS was chosen for this investigation because it has the following attributes:

- it can account for spatial and temporal variation in storm rainfall across a catchment;
- it can accommodate variations in catchment characteristics;
- it can be used to estimate discharge hydrographs at any location within the catchment; and
- it has successfully been widely used across NSW.

3.2 MODEL SET-UP

The catchment was divided into a number of subcatchments based on topography, land use, roads and the existing drainage system layout. Estimates of existing peak design and historic flows were derived for input into the hydraulic model.

Each subcatchment was analysed to determine parameters including area, weighted average catchment slope, the percentage of impervious area, and lag time to the next downstream subcatchment. A summary of adopted subcatchment parameters is enclosed in **Appendix C** while **Figure 2** shows the adopted RAFTS sub-catchment plan.

A total of 8 major subcatchments were identified for the RAFTS model, with a total catchment area of approximately 44 ha. An area upstream of Pretty Beach Road, in the vicinity of the outlet culverts, was thought to retain stormwater and subsequently attenuate discharge into Brisbane Water. This ponding area upstream of the culverts was modelled in RAFTS to determine if flows were attenuated behind the culverts. The catchment breakdown is shown on **Figure 2** and includes the RAFTS model network layout.

3.3 CALIBRATION

As no stream gauge exists in the catchment, there was no possibility of a true storm calibration, however comparison was made with the Rational Formula calculations for "small to medium sized rural catchments", as outlined in ARR 1987 (*IEAust, 1987*). The results of this comparison are shown below in **Table 3.1**.

Average Recurrence	Peak discharge estimated using Rational Method	Peak discharge estimated using RAFTS model (m ³ /s)	
Interval (AEP)	(m ³ /s)	Discharge Upstream of Culverts	Discharge to Brisbane Water
20%	4.5	4.5	4.4
5% 1%	7.8 13.6	8.9 14 1	8.6 11.8
PMF	*	66.4	64.3

Table 3.1 : Comparison of Peak Flow Results between RAFTS and Rational Method

As can be seen from the results tabulated above, the RAFTS results are very similar to the results provided by the Rational Method. The RAFTS model results were adopted because the methodology is more comprehensive than the Rational Method, taking into account subcatchment slope, roughness, impervious percentage, lag times and storage effects.

Table 3.1 shows that the culverts beneath Pretty Beach Road attenuate discharges entering

 Brisbane Water, however, the magnitude of the reduction is not large.

To calibrate the hydraulic model (*refer Section 4.2*) several historical rainfall events were modelled in RAFTS to estimate peak flows. Discharge estimates for historical events are shown in **Table 3.2**.

Table 3.2: Estimation of Historical Peak Flows

Date	Estimated peak discharge upstream of Pretty Beach Road culverts (m ³ /s)
16/01/88 - 17/01/88	2.5
29/04/88 - 01/05/88	4.5
02/02/90 - 04/02/90	4.8
08/02/92 - 10/02/92	4.8
06/08/98	2.2

Questionnaires completed by residents adjacent to Turo Creek indicated that there was a large flow event in 1974. Unfortunately rainfall pluviometer records were not available for this event. **Table 3.2** shows that the storm event of February 1990 is likely to have generated the highest recent discharge in Turo Creek. It is also worth noting that this event, as well as the February 1992 and April 1988 events, are comparable with a 20% AEP event as defined in **Table 3.1**.

3.4 DESIGN STORM SIMULATION RESULTS

The RAFTS model, once "calibrated", was used to simulate runoff generated using design storm rainfall intensities and temporal patterns for the study area. Storm rainfall data was generated by applying the principals of rainfall intensity estimation and design temporal distributions outlined in AR&R (*IEAust, 1987*).

A range of storm durations were considered and modelled to establish the critical storm duration for the catchment. The critical storm duration corresponds to the maximum peak discharge generated by the hydrologic model for the most downstream node within the catchment.

A critical duration of 2 hours was determined for the catchment.

Using a critical duration of 2 hours and the corresponding rainfall intensities and design temporal patterns, peak discharges and discharge hydrographs were generated for the range of flood frequencies.

Estimated peak catchment discharges at the outlet to the catchment and at the entrance to the "basin" upstream of the Pretty Beach Road culverts for the design storms are listed in **Table 3.1**. **Table 3.4** displays the peak discharge at locations where the flow adopted in the hydraulic model of Turo Creek changed. Full RAFTS output files and hydrographs exported to the hydraulic model are contained in **Appendix D**.

	Estimated Peak Discharge (m ³ /s)							
Node	PMF	1% AEP	5% AEP	20% AEP				
10	33.3	7.1	4.5	2.2				
8	50.5	10.6	6.9	3.4				
GU	63.3	12.6	7.9	3.9				
Outlet	66.4	14.1	8.9	4.5				

Table 3.4: Peak Discharges Adopted for Hydraulic Modelling

Note: GU refers to Upstream side of crossing G. Refer Figure 3 for node locations.

4.1 MOUSE MODEL

MOUSE is a one dimensional, hydrodynamic program developed by the Danish Hydraulic Institute (*DHI*). It is a comprehensive model able to calculate surface runoff, open channel flow, pipe flow, water quality, and sediment transport for urban drainage systems. MOUSE solves the complete St. Venant (*dynamic flow*) equations which allows for the modelling of tidal tailwater conditions, flow reversal and storage effects.

For the current study, MOUSE was used solely as a hydraulic program (*RAFTS was used for hydrology*) to calculate pipe and channel flows in Turo Creek.

4.2 MODEL SET-UP

4.2.1 Detailed Survey

A survey was undertaken to define Turo Creek. The top and bottom of the channel, bridge and culvert structures within the channel and ten cross sections were surveyed along the length of the study area. Cross sections were analysed to ensure they accurately represented Turo Creek and overbank areas before they were entered into the hydraulic model. Nodes were defined at strategic positions between the cross sections and at bridge/culvert structures to define invert elevations and the bridges. Floor levels of dwellings in the vicinity of the creek were obtained except for No. 24 Pretty Beach Road where the owner refused entry for the survey. A plan of the survey, the location of the bridge and culvert structures, floor levels, sections and MOUSE nodes are contained in **Figure 3**. Diagrams of all bridge and culvert structures are contained in **Appendix E** while **Appendix F** shows the surveyed cross sections.

4.2.2 Hydrologic Data

Hydrologic data derived from RAFTS modelling (*refer Section 3*) was input into the MOUSE model. Three hydrographs were imported for each of the 1% AEP, 5% AEP, 20% AEP, PMF and February 1990 events to account for an increase in flow from the top of the channel to the outlet. The hydrographs were exported from Catchments B, C and D in the RAFTS model and applied to nodes 10, 8 and GU of the MOUSE model (*refer* **Figure 3**). All hydrographs are contained in **Appendix D**.

4.2.3 Tidal Data

In order to accurately model the February 1990 event, tidal records that correlated to the pluviometer data, were used in the hydraulic model. The tidal record for the February 1990

event is contained in **Appendix B2**. Tidal levels for the 1% AEP, 5% AEP, 20% AEP and PMF events were supplied by Gosford City Council and are shown in **Table 4.1**.

The tidal records provided by Council (*refer Table 4.1 below*) indicate tidal tailwater conditions of 1.60m AHD for the 1% AEP and PMF flood events. However, Council has suggested that it would be appropriate to adopt the estimated lagoon (*Brisbane Water*) 1% AEP flood level as a minimum inundation backwater within Turo Creek. Council has advised that the 1% AEP flood level for Brisbane Water at this location is 1.95m AHD. **Table 4.1** indicates adopted backwater flood levels for the 1% AEP and PMF events.

Flow Event	Tidal Tailwater Control (m AHD) *	Brisbane Water Flood Levels (m AHD) *
20% AEP	0.45	-
5% AEP	0.80	-
1% AEP	1.60	1.95
PMF	1.60	1.95

Table 4.1: Adopted Tidal Tailwater Control

Note: * : After Gosford City Council.

4.3 MODEL CALIBRATION

The hydraulic model was calibrated by running the model for the February 1990 event and comparing the results to actual levels observed by the residents of Pretty Beach. **Table 4.2** displays the difference between calculated water levels and the levels observed by residents. The model levels compared favourably with the observed levels.

Table 4.2: Results of Hydraulic Calibration

Node *	Calculated 1990 Water Level (m AHD)	Observed 1990 Water Level (m AHD)
JU	3.15	3.13
HU	2.51	2.48
GU	2.40	2.30
EU	2.15	2.16
CU	1.47	1.55

<u>Note:</u> * : J<u>U</u> refers to <u>Upstream side of crossing J, similar for others.</u>

4.4 HYDRAULIC MODELLING RESULTS

Once the hydraulic model was calibrated, the 1%, 5% and 20% AEP events and the PMF were modelled. The estimated peak flood levels for the four events are presented in **Table 4.3** while longitudinal profiles of the peak flood levels are shown in **Figure 4**. Flood extents for all events and peak flow velocities for the 1% AEP flood are shown in **Figure 5**. Peak water surface elevations are also displayed on the survey cross sections contained in **Appendix F**.

Patterson Britton & Partners

The results of modelling show that the banks of Turo Creek are overtopped during a flood event with an annual exceedance probability as high as 20% (on average 1 in 5 years). With reference to Figure 4 it can be seen that the numerous crossings traversing Turo Creek create backwater effects which accumulate upstream. Figure 5 shows that there are two main outbreak locations; a minor outbreak upstream of Section 6 most likely due to the presence of a retaining wall (this outbreak is only noticed in the 20% AEP event) and a major outbreak centred around sections 3 and 4 which is due to obstructions and filling of the creek and flattening of the overbank regions.

	Estimated Peak Flood Levels ⁺ (m AHD)						
Node *	PMF	1% AEP	5% AEP	20% AEP			
10	6.23	5.10	4.79	4.51			
9	5.91	4.75	4.50	4.29			
8	5.92	4.76	4.51	4.13			
7	4.58	3.66	3.48	3.16			
KU	4.59	3.66	3.48	3.16			
KD	4.44	3.57	3.43	3.13			
6	4.31	3.55	3.42	3.13			
JU	4.09	3.47	3.37	3.12			
JD	3.95	3.33	3.05	2.49			
HU	3.95	3.34	3.05	2.50			
HD	3.50	2.83	2.67	2.39			
GU	3.44	2.79	2.63	2.39			
GD	3.34	2.72	2.57	2.34			
FU	3.29	2.69	2.55	2.32			
FD	3.11	2.53	2.37	2.18			
EU	3.04	2.47	2.32	2.16			
ED	2.77	2.16	1.99	1.76			
DU	2.73	2.13	1.97	1.75			
DD	2.53	1.95	1.75	1.52			
2	2.22	1.95	1.66	1.49			
CU	2.18	1.95	1.65	1.45			
CD	2.09	1.95	1.53	1.08			
1	2.00	1.95	1.15	0.82			
В	1.95	1.95	1.08	0.77			
А	1.95	1.95	0.80	0.45			
OUT	1.95†	1.95†	0.80	0.45			
Notes:							

Table 4.3:	Estimated	Peak	Flood	Levels
------------	-----------	------	-------	--------

<u>U</u> refers to <u>U</u>pstream side of crossing J, J<u>D</u> refers to <u>D</u>ownstream side of crossing J.

+ Peak flood levels determined from Tailwater Levels provided in Table 4.1.

† Water levels shown in italics are estimated Brisbane Water flood levels provided in Table 4.1.

4.5 SENSITIVITY ANALYSIS

A sensitivity analysis was undertaken to assess the effect of tidal fluctuations on flood levels in Turo Creek. Results of the sensitivity analysis are contained in **Appendix G**. It was found that water levels towards the outlet of Turo Creek are greatly affected by high tailwater conditions. During the 1% AEP event a difference in tidal level of 1.45m (1.95m AHD compared to 0.5m AHD) resulted in a maximum water surface elevation increase of 0.58m near the upstream side of the Pretty Beach Road culverts.

The adopted tailwater levels in Brisbane Water in the design storms provide flood levels in Turo Creek at the upper end of the possible range. This is a conservative approach however without detailed joint event probability analyses (*beyond the scope of this study*) these levels are considered appropriate.

4.6 FLOOD PRONE PROPERTIES

Figure 6 shows the residences predicted to be inundated above floor level by the various design flood events. It can be seen that residences become inundated during an event with an annual exceedance probability of 5%. It is estimated that 2 houses are flooded above floor level during the 5% AEP event, 9 houses during the 1% AEP event and a total of 14 houses during a PMF event. It is likely that the dwelling at No. 24 Pretty Beach Road is also adversely affected by flooding however it was not possible to survey the floor level due to owner objection.

5 CONCLUSIONS

This study investigated flooding of the Turo Creek catchment at Pretty Beach. Results predict that the creeks' banks would be exceeded in flood events with an average recurrence interval of around 5 years (20% AEP).

The level of the tide adopted for use in the study had a significant effect on flood levels at the lower end of the catchment. Based on tidal levels recommended by Gosford City Council it was estimated that 2 houses would be flooded during the 5% AEP event, 9 houses during a 1% AEP event and up to a total of 14 houses during a PMF event. These figures do not include a house that was not surveyed due to resident objection. It is likely this house may be inundated, however this should be confirmed by survey.

The effects of the existing storage within the park adjacent to Pretty Beach Road was to slightly attenuate flood discharges through the culvert outlet to Brisbane Water. The effects of the attenuation of peak flood flows is limited by the overtopping of Pretty Beach Road during events in excess of the 5% AEP event.

6 **REFERENCES**

- Australian Rainfall and Runoff (AR&R), Institute of Engineers Australia, 1987.
- Bulletin 53 The Estimation of Probable Maximum Precipitation in Australia: Generalised Short-Duration Method, *Bureau of Meteorology*, 1994.
- Draft NSW Floodplain Management Manual, NSW Government, 1999.
- Floodplain Development Manual, NSW Government, December 1986. brochure
- Runoff and Flow Simulation (RAFTS), User Manual v2.8, WP Software, June 1992

FIGURES

TURO CREEK FLOOD STUDY **CATCHMENT PLAN &** RAFTS MODEL NETWORK

MEDIUM DENSITY RESIDENTIAL 45% IMPERVIOUS

FIGURE 2

3680-Turo/3680-03

NODE & SECTION LOCATIONS

HOUSES 16 TO 24. FLOOR LEVELS RANGE FROM 1.50 TO 2.47 mAHD, REFER FIG 6 FOR DETAILS	S1 N1 (S	NC N2 (1) (1) (1) (1) (1) (1) (1) (1)	S3 ND NEO NEI 9 41 - 412	S4 17 NF NG 44 17 NG		25 N6 27 S7 NK	N7
DATUM RL -4.000M		6 8 8	22	100000000000000000000000000000000000000	00 00 00 00 00 00 00	29 44 51	98
	15 2.0	53 1.95 2.0 65 1.95 2.1 66 1.95 2.2	75 1.95 2.5 97 2.13 2.7 99 2.16 2.7 32 2.47 3.0	37 2.53 3.1 55 2.69 3.2 57 2.72 3.2 63 2.79 3.4	67 2.83 3.5 05 3.34 3.5 05 3.33 3.5 37 3.47 4.0	42 3.55 4.5 43 3.57 4.4	48 3.66 4.1
FLOOD LEVEL O FLOOD 20% AEP 12 FLOOD LEVEL O O EXISTING 0 12	0 0 88 2 1 1	0 1.08 1.	3 1.52 1. 3 1.75 1. 7 1.76 1. 8 2.16 2.	0 2.34 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39	0 3 2.39 2 2.50 3. 3.12 3. 4 4	3.13 <u>3.</u> 3.13 <u>3.</u> 5 <u>3.16 3 3</u>	<u>3,16</u> 3.
CHAINAGE (M)	<u>55.31</u> 75.33 75.33 75.33 75.33	80.95 95.83	113.28 0.3 114.08 116.62 0.3 122.46 0.2 128.34 0.4	146.18 0.5 148.11 0.5 149.01 149.01 166.47 0.5 167.47	178.96 1.0 183.54 0.8 184.84 192.70 1.2 193.60 208.00 1.6	224.14 238.41 240.25 2.4 242.31 1.10	265.18

<u>NOTES</u>

- FLOOD PROFILES ARE APPROXIMATE ONLY. NO ACCOUNT OF LOCALISED BLOCKING OF EXISTING STRUCTURES HAS BEEN MADE.
- 2. ALL HEIGHTS ARE IN METRES AND RELATIVE TO THE AUSTRALIAN HEIGHT DATUM (AHD)
- 3. THE BASE OF THE HOUSES SHOWN THE SURVEYED FLOOR LEVEL.

20 30 40 50 m 10 0 L HORIZONTAL 1:1000 (A3)

0 VERTICAL 1:200 (A3) 6 8 10 m 2 4

3680-Turo/3680-04

TURO CREEK FLOOD STUDY LONGITUDINAL SECTION **FLOOD PROFILES**

Ν	IS	SET	AT

\bigcirc
(S1)
21
46

EXISTING HOUSE EAST OF CREEK EXISTING HOUSE WEST OF CREEK

SURVEYED SECTION

(NB) "MOUSE" NODES

<u>LEGEND</u>

APPENDIX A

RESIDENT QUESTIONNAIRE

Please return to: Gosford City Coucil PO BOX 21 Gosford NSW 2250 Att: Mr. Senthil Myl

GOSFORD CITY COUNCIL

••••!

QUESTIONNAIRE -TURO CREEK FLOOD STUDY AND PRETTY BEACH DRAINAGE INVESTIGATION

Your response to this questionnaire will help Council in its investigation of the drainage system and flooding problems in your area. Please tick D box where requested.

1.	Please provid	le your address details below.
	Address:	
		Postcode
	Name (optiona Name of Busi	al): ness/Organisation (if applicable):
2.	How long hav	ve you been at this address (or owned this property)?
	year mon	s (if less than one year please state number of months) ths
3.	Type of deve	lopment
	Bus Ho Re Ott	siness. Please indicate type: use sidential units. ner, Please specify:
4.	Your status	with regard to this property
	OvTeOvOvSetOt	vner residing or conducting business at property. nant only. vner not residing nor conducting business at property. cretary of Body Corporate. her. Please specify:

Have you ever experienced any flooding or drainage problems at this address?

No No Yes

A number of flooding and drainage problems have been reported to Council in the area. If you can remember the dates of storms which produced flooding, please indicate these below (the following storm dates may be of some help in assisting your memory: (1988, January 1999). Please rank the storms with the worst storm placed first in the list.

Dates of worst storms:	1.	
	2.	********
	3.	*****
Oth	hers	*******************

If possible please draw a sketch map of your property and show on it where the floodwater comes from and where it goes. If possible, show depths of floodwaters. Show any other relevant details and return it with this questionnaire. It may be of assistance to state whether the floodwaters have risen from a channel or natural creek system (eg. Turo Creek, or have come from overland flow entering your property from the adjoining street or roadway).

8. What parts of your property are flooded? (you may tick more than one box)

Worst Storm

Other Storms

 no flooding grounds or yard garage/covered par shop/office/house (a shop/office/house (b other 	king area	no flooding grounds or yard garage/covered parking area shop/office/house (above floor) shop/office/house (below floor) other
---	-----------	--

9. During severe storms, what is the approximate cost of damage caused by flood or drainage water on your property?

> Other Storms Worst Storm no damage no damage 0-\$500 0-\$500 \$500-\$1000 \$500-\$1000 \$1000-\$2000 \$1000-\$2000 \$2000-\$5000 \$2000-\$5000 \$5000-10000 \$5000-10000 approx \$____ approx \$__

5.

6.

7.

Please return to: Gosford City Coucil PO BOX 21 Gosford NSW 2250 Att: Mr. Senthil Myl

If you think you know the cause or source of flooding in the general area please indicate this below. Also if you have any other comments about flooding in your area, please make these in the space below.

11. If you have any suggestions for resolving the drainage problems in your area, indicate these below or on a separate sketch.

- 12. Do you have any photographs, videos or other information about flooding in your area which you would be prepared to make available to the Consultant or Council?

10.

No Yes (if 'yes' please provide your telephone number in Question 15 below so that we may contact you) 13. Would you like to be interviewed by Council's Consultant to discuss your particular drainage problems and the information provided in this questionnaire?

No Yes (if 'yes' please provide your telephone number in Question 15 below so that we may contact you)

Please note that due to time constraints, not all respondents will receive a phone call.

14. Have you previously written to Council in connection with flooding and drainage problems in your area?

No
Yes

If 'yes' please attach copies of your correspondence (if available) and provide a list of the dates of the correspondence below.

Date of correspondence:

15. If you have answered 'yes' in Questions 12 or 13, or if you have any other information which you think would be relevant please provide your telephone number below so that we may contact you.

Work Phone:	(Ask for)
Best time to call is	
Home Phone:	(Ask for)

Best time to call is

16. In the future we will need to come back to survey the creek and any flood levels indicated by your sketch. May we enter your property at that time to undertake the survey?

No
Yes

After completing the questionnaire please check that you have answered every question. Put the completed questionnaire in the attached freepost envelope and post it within seven days. Thank you for your assistance.

APPENDIX B1

HISTORICAL RECORDS - RAINFALL

I	CLIM	1A1	ΓE	8	C	DN	SUL	_Tf	ANC	CY	F	a	x : (51	-0	2-	92	96	15	505	;				ſ	ar	2	9	Ľ	JU		Τſ	• 2	5
	Nbr	31	5		8 8	5	5	5	5 6	8 7	5 6		5		58	3	8	30	30	31	31	28	31	29	2	8	31	31	30	30	8	31	31	
	otal	142 21		+	103.01	0.0	0.12	0.02	1 1 1 1	2.00	0.12	2.044	330.0	4.02	102.8	376.8	47.0	62.4	114.0	58.6	103.8	223.8	42.2	303.4	27.4	160.2	195.0	103.4	38.8	131.0	76.0	99.0	30.5	
	lin T	00											0.0		0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	<u>م</u>	10 23		+ 0	7.4			4 0		1 7 7 7	10.0	5	76.8	27.4	25.0	104.8	14.0	21.0	43.6	18.0	37.0	80.6	15.0	74.0	5.4	47.0	50.0	30.0	12.0	55.0	24.0	40.0	8.(
	sM Bv	A R	5 2		0.0			5		- F		ŧ. !	10.7	3.2	3.5	12.2	1.6	2.1	3.8	1.9	3.3	8.0	1.4	10.5	0.9	5.3	6.3	3.3	1.3	4.4	2.5	3.2	1.0	
	Ä	د حا	-1-	 २1	 	 5_[213	 3		<u>-</u>		ᆰ		2	3		4		8	10		100		0.0		0.0	0.0	Γ	13.4		1.5	0.0	
	31			- -		в. -	4		2			2	0.		2	0	0.0	0.0	0,0	0.0	5.0		0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	
	30	6			4							2		9	0	0	0.0	0.0	2	0.	47		0.0	3.0	0.0	2.2	0.0	3.0	0.0	0.0	0.0	0.0	1.0	
	29		5	5		0' m	~i •	ວ່ ດ ທີ່ 1	5			- -	0	0	0	0	0	9	0		0	0	0.	0	0.	0	0.0	0.0	0	0	0.0	0.0	4.5	
	28		3		6	5			5 I			5			8	0	2	0	0	0	0	2		0	0	2	0	2	0	0.	0	3.0 4	0.0	
	27		4	00	3	8		4	5	ö		5	ö	6	25.	÷	3	0 18.	0	0	2	-	0	0	0	0 12	6	0	0	0	0	0	0.	
	26		3	8	0.0	8	0.0	0.0	26.2	8		5	0	0.0		2	4	0	43.	l di	0	8 27.	0	0	0	0 18.	0 14.	0	0	4	0	0	0	
	25		8	8	23.0	8	8	4.0	62.4	8		34.2	0.0	0.0	7.2	1.2	0.0	0	0.0	ö	1	80.	6	0	5.	6	0	0	0	0	0	0 11	0	
	24		22	0.0	34.0	0.0	8	5	0.0	0.2	8	8	8	12	17.4	8	2	0.0	0.0	0.0	0,0	0	0	0	5.	0		0	0	65.	0	10	0	
~	٤	3	8	8	0.1	8	8	00	8	0.1	8	56.4	8	16.0	0'0	1.8	3.0	0.0	00	20	13.2	0.4	10.0	1.2	5.4	25.0	D.G	50	0		0	2	0	
on 3n	5	3	8	8	2.2	9; 0	0.0	8	8	80	0.0	3.4	0.0 0	0.6	16.2	3.0	2	0.0	0.0	00	37.0	0.0	0.0	5.2	2	3.0	0.0	20	0	0	-	0.0	-	
levati	י ז		8	10.2	4.0	0.0	0.0	8	17	8	80	0.2	0.0	0.0	11.0	0.1	0.0	21.0	0.0	10	24.6	0.0	00	0.0	8	0.0	0.0	0	0	0.0	3.0	0	0	
ш ш			2	0.2	6.0	1.6	0.0	1.2		00	8	0.0	2.8	0.0		20.6	0.0		14.0	0 6	00	4	00	00	0.0	0.0	00		10 01	00	0.0	00	0	
9'58"	٠ م		0.0	0.0	3.6	0.0	0.0	2.4	22	0.0	0.0	0.0	76.8	0.0	0.1	00	0.0	0.0	12	6		00		8	0.0	000	0	8		004	00	12.0	0.0	
151°1	Ť		0.0	0.0	4.2	0.0	0.0	0.0	0.0	0.0	0.0	1.4	58.8	8.4	0.0	16.8	00	0.0	2.6	180	00	00		0	0.0	00	3.7		11 8		; ?	00	0.0	
ude '	ť	-	0	0.0	0	0.0	0.0	0.0	0,0	0.0	9	6.4	8.0 \$	0.0	0.0	8.2	0.0	0.0	8.0	63		0		020	00	00	16.0				06	00	25	:
-ongi	۲ ۲	2	0	0.	0	0.	1.2	0.	8.	0.0	9.0	5.8	3.4	0.0	0.0	3.0 4	0.0		1 2 1					202	00						200		00	
1 • S.	ŭ,	2	0	0	8.0	0	0	0	0	.0 20	8	ю 20	4	0.0	9	0.0	0	00	0								00							
29'22	1	2	2	0	0	0	9	4	0	0,	0	9 9	0	9	0.																			j
le 33°	;	¢	2 53.	0 0	0	0	8	0	0	0 0	0 0	0	0	9	0	0							3											<u>!</u>
atitud	5	51		0	o o	o o	Э.	0	0	0	0	0	0		0	0	R 14						4 9					4 4						2
- L	ç	12	ö	0	ö	0	0	ö	0	0	0.0	4	0	0	0														2	-	1		2 4	2
ll Ope	:	Ę	0.0	6	6	0.0	4.2	o.	0	2	0.0	61.	0	2	17	0													2 0			2 V		3
Stil	:	0	0.0	0.0	0.0	0.0	0.2	1.8	3.0	4	0.0	21.6	0.0	20	0	l											5 C) >
1964		o	0.0	0.0	0.0	0.0	0.0	0.0	5.4	2.0	0.0	0.0	00	00		0						1			- 6			5	5	N	3 0	5 C	ກ່]ເ	5
Dec		60	0.0	0.0	3.8	57.0	0.0	0.0	0.0	7.6	4.6	0.0	0.0	0.6		65.0		- 6	4	2 :				0.01				3	3	8	5	4		1
ened		7	1.6	1.2	0.0	5.6	0.0	1.0	2.0	0.0	0.0	00	0.0	0.6									2.0					0.0	8	0	2.0	3	0	5
ő	_		0.2	0.2	0.0	0.0	0.0	0.0	11.8	0.0	0.0	0.0	33.4	C		9 9 9 9		0.21	3	3	27		8	0.10	31.4		3	2	0.0	0	6.2			3
Woy	(աս	ب	1.0.0	7.2	1.4	0.0	1.2	0.0	0.0	0.0	0.0	0.0	22	4				2.0			2.2	0.0		0.0	0.4.	0.0	07	0.0	0.0	0.0	1.8	4.0	0.0	
Woy	u) u	S	2 10	4	0	0	1.0.1	0	5.2	0.0	0.0	00	44					0.0	0.0	8	0.0	0.0	0.0	0.0		00	0.0	0.0	8	0.0	0.0	5.0	입	0.0
ality:	9an	4	0 15	0 12	6		0	0	0	0	0		1					0.0	00	<u>-</u>	0.0	0.	50	1.2	4.6	3.0	6.8	5.2	0.0	0.0	0.0	0.0	0	8
. Loc	ţ	ŝ	3 15.		5				0		0	6	- - - - - - - - - - - - - - - - - - -			2 1	2	0		2	2	17	0.0	<u>5</u>	2.0 5	0:0	0.0	4.8	0.0	0.0	0.0	8.0	0.0	0:-
1318	ion	7	22 E		i li				0		0	- c	- 6		5 7	⊃ ° + ∘		0	0 0	0. 11	0		2	N	4	0	0	0.0	0.0 3	0.0	0.0	3.0	0.0	0.0
90	at	~	6.4		; v		26	10		i d	Ĩ	le	5 ē	s c	5 1	o o	۲	٥	٥	-	4	~	~	9	•	-	U	5	5		Ĩ	÷	_	

ata for Woy Woy (Chun Chiu)

Copyright © Commorwealth of Australia 2000 Prepared by Climate and Consultancy Section in the New South Wales Regional Office of the Bureau of Meteorology Contact us by phone on (02) 9296 1555, by fax on (02) 9296 1567, or by email on regnsw@bom.gov.au We have taken all due care but cannot provide any warranty nor accept any liability for this information.

(.....)

Page 4 of 4

17:23 ~~ 100 . .

P.06/06

	28 29 30 31 Avg Max Min Total Nbr	0.0 0.0 0.0 0.0 2.1 19.6 0.0 64.4 31	19.2 7.4 16.4 2.2 19.2 0.0 65.2 30 0.0 00 00 00 00 00 00 00 00 00 00 00 0	0.0 0.0 0.0 0.4 2.2 37.2 0.0 69.4 31	0.0 0.0 1.4 3.8 0.5 5.6 0.0 14.0 31	0.6 0.0 0.0 0.0 0.0 0.6 0.0 0.6 30 6			0.0 9.8 11.2 1.8 11.2 0.0 52.6 30 D	0.0 0.0 0.0 0.0 2.9 26.4 0.0 91.4 31	0.0 4.6 1.0 0.0 3.8 22.8 0.0 119.0 31	0.0 76.4 28 T	26 24 0.0 0.0 7.5 61.8 0.0 231.8 31 X		0 0.0 0.2 0.0 0.0 4.9 31.2 0.0 153.2 31	0 0.0 0.0 0.0 4.0 30.6 0.0 120.0 30 X	<u>) 0.0 0.0 0.0 0.0 0.1 1.2 0.0 1.8 31 0.0</u>	2 0.0 0.0 0.0 0.0 0.0 1.2 0.0 1.2 31 0	2 0.0 0.0 0.0 147.6 30 147.6 30 1	0 0.0 3.6 0.0 1.2 0.9 7.6 0.0 27.4 31 0	0 0.0 3.8 4.2 5.2 30.6 0.0 157.4 30	B 6.6 0.0 0.0 0.4 2.7 26.8 0.0 84.2 31	0 0.0 0.0 0.2 0.0 4.5 33.2 0.0 140.8 31	0 0.0 5.0 2.0 11.2 0.0 57.4 29	8 0.0 1.0 0.0 1.2 2.0 10.2 0.0 62.2 31	0 0.0 1.0 0.0 1.0 13.8 0.0 30.2 30 g	0 0.0 0.0 0.0 0.0 4.9 35.8 0.0 151.4 31 V	0 0.0 0.0 0.0 10 179.0 30 Ŭ	0 29.8 3.8 0.0 0.0 1.4 29.8 0.0 42.8 31 5	0 0.0 0.2 32.8 118.2 5.1 118.2 0.0 158.0 31 O	0 0.0 46.2 15.2 4.1 45.2 0.0 122.0 30	2 2.4 0.0 0.0 0.0 1.1 11.8 0.0 35.4 31	0 0.0 0.0 0.0 10 16.8 0.0 89.4 30 5	.0 0.0 1.4 0.0 8.8 1.7 19.6 0.0 52.6 31 N	0 0.0 33.8 48.2 8.2 3.3 48.2 0.0 103.0 31	0 3.8 8.3 136.8 0.0 224.6 27	.0 0.0 0.0 0.0 0.0 0.0 0.9 11.8 0.0 27.5 31 0	0 0.0 0.0 0.0 0.0 0.0 0.8 14.2 0.0 24.2 30 0	<u>.0 0.0 0.0 0.0 0.0 4.0 33.8 0.0 125.2 31 8</u>	.0 0.0 8.8 30.6 3.1 31.2 0.0 94.2 30 O	,			
.ongitude 151°19′58"E • Elevation 3m	17 18 19 20 21 22 23 24 25 26 21	<u>0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</u>	<u>.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </u>	0.0 0.0 0.0 0.0 0.0 0.0 4.8 9.8 0.0 0.0	0 0.0 0.0 0.0 2.8 0.4 5.6 0.0 0.0 0.0 0.0	0 00 00 00 00 00 00 00 00 00 00 00		.0 0.0 0.0 7.8 6.8 16.4 4.2 1.0 0.8 0.0 0.0	0 3.8 0.0 0.0 0.8 1.0 1.8 0.0 0.0 1.8 5.8	.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 6.8 19.2 8.8	0 00 00 48 168 218 04 10 00 000		2 31.0 3.4 V.0 V.2 4.4 1.5 1.0 0.0 V.0 V.0 V.0 V.0 V.0 V.0 V.0 V.0 V		20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	72 306 0.0 0.0 0.0 0.0 17.0 2.2 0.0 0.0		<u>.,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</u>	<u>40 18.0 14.8 0.0 0.0 5.0 0.0 0.0 0.0 33.6 43.8</u>	<u>.0 1.8 0.0 0.0 0.0 0.8 6.0 7.6 0.0 0.0 0.0</u>	18 0.0 0.0 12.2 30.6 24.8 26.4 12.2 0.4 1.0 3.2	0.0 0.8 12.8 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0	1.0 6.4 1.2 0.0 1.2 21.2 4.6 3.2 20.0 0.0 2.0	2.8 6.8 0.0 0.0 0.0 5.2 0.6 0.5 0.0 4.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 1.4 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0	4.2 25.2 1.8 3.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0	22 35.2 10.4 0.0 0.0 0.0 0.0 5.0 0.8 0.0 0.0	0.0 0.0 0.0 0.0 5.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 5.6 0.0 0.0 1.2 0.0 0.0 0.0	0.0 0.0 0.0 0.0 32.6 15.8 0.0 0.0 0.0 0.0 0.0	0.0 0.0 2.6 2.4 4.8 1.2 0.0 0.0 0.0 0.0 0.0	1.0 1.4 6.0 13.6 0.0 0.0 6.4 16.8 0.0 0.0 0.0	0.0 1.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.8	2.4 3.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 9.0 10.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.4 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 14.2 2.2	0.2 28.2 1.6 0.6 7.0 5.8 4.0 2.8 0.0 0.0 0.0	56 47 10 34 02 312 02 00 00 0.0 0.0		The of the Briman of Mataominur	lice of the parent of thereof and?	וונם טו חוב בעוכמים טו וויניניטי טיטטן
pened Dec 1964 • Still Open • Latitude 33°29'22"S • L	7 8 9 10 11 12 13 14 15 16	0.0 4.0 4.8 1.2 1.0 8.6 0.0 0.0 0.0	0.0 18.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.4 0.0 0.8 2.4 2.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0_0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 1.8 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			1.8 0.0 0.0 0.0 2.0 3.8 0.0 Z.8 Z.2 10	7.6 20.5 0.2 13.4 10.8 0.4 0.2 0.0 0.0 20	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						0.0 0.0 0.0 0.0 1.8 30.6 0.0 0.0 1	00 00 00 1.0 5.2 0.0 4.2 0.0 0.0 C	332 02 78 1.0 6.0 0.0 0.0 0.0 0.0 1	12 00 60 0.0 0.0 0.0 11.2 3.6 2	0.0 10.2 7.4 8.0 9.2 5.8 0.0 0.0 0.0	0.0 5.2 0.0 1.6 0.0 13.8 6.4 0.0 0.0	2.2 0.0 0.0 0.0 0.0 0.0 0.0 12.6 4.8	0,0 0,0 0,0 0,0 04.8 16,2 12.8 25.0 6.2	1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 11.8 0.0 0.0 0.0 1.2 0.0 0.0 0.0	0.0 16.8 0.0 0.0 0.0 0.0 0.0 0.0	19.6 9.6 0.0 0.0 0.0 2.2 0.0 0.0 0.0	0.0 2.4 0.0 0.0 1.0 1.2 0.0 0.0 0.0	0.0 0.0 0.0 0.0 3.2 138.8 48.0 6.2	30 0.0 5.6 6.8 0.0 0.0 0.0 0.0 0.0	1 n 2 n 0 0.0 0.0 0.0 0.0 0.0 0.0 3.4	1 0.0 4.8 6.2 33.8 14.6 1.2 0.0 0.0 0.0			' AUSTAIla ∠uvu 	Alfancy Section In the New South Visites Regional UN	ultancy Section In the New South Wates Regional On R
ation to 9am (mm)	1 2 3 4 5 6 7	0.0 0.0 19.6 4.2 6.4 14.6	0.0 0.0 0.0 0.0 0.0	37.2 9.2 1.8 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 3.0 0.0 0.0 0.0	0.0 8.2 0.4 0.0 3.8 0.0		8.6 1.2 0.0 0.0 0.0 0.0 0.0	0.0 12.8 22.8 17.6 0.4 1.6	0.0 0.0 0.0 0.0 0.0 11.8	7.2 11.6 32.2 11.4 61.8 22.8	0.0 0.0 0.0 0.0 0.0 0.2	0.0 2.8 1.6 0.6 0.6 31.2	0.0 1.8 1.8 2/-8 /-0 0.0			0,0 1.2 23.0 0.0 0.0 1.0 20 0.0 3.0 3.0 0.0	0.0 0.0 3.2 3.2 0.2 0.0 20 20 25 00 07 18		4.0 2.2 1.0 0.0 0.7 20.0 0.0 7.7 7.8 0.0 7.4				3.8 35.8 12.8 13.0 14.6 17.2		0.0 0.0 0.0 0.0 0.0 2.6	0.0 0.0 0.0 0.0 0.0	11.2 1.0 0.0 0.0 0.0 0.0	1.2 7 7 7 0 0 0.0 0.0 0.0 0.0	2.0 0.0 0.0 0.0 14.8 11.4						0.0 0.0 0.0 0.0 0.0 138	0.0 0.0 0.0 0.4 v.o 13:0	4.8 0.8 0.0 0.0 1.0 U.U	Copyright © Commonwearur ur	Domestic All Climate and Consult), Prepared by Climate and Consu

_

Jata for Woy Woy (Chun Chiu)

i....,

	(CLIM	ATE	E 8	ç (CON	SU	LT	AN	CY	ł	Fa	x÷	61	-0	2-	92	96	515	69	}				Μ	lar	2	9	'0	С		17	:20	0		ł	₽.١	04	/0	6	
		r	5	8	3	8	5	ភ្	8	5	នា	5	5	2	3	8	ب	30	31	3	8	31	8	33	3	28	5	8	5	2	5	5 3		6		9	3	58	31	8	
		ÎŽ	35.2	5.0	37.4	48.6	50.2	6.2	9.8	6.4	75.2	20.8	49.6	87.2	93.4	99.2	74.6	90.2	12.4	38.6	16.8	44.2	109.2	176.4	73.6	51.2	73.2	54.4	7.2	59.2	110.01	125.6	85.6	64.8	69.4	62.2	46.2	145.4	234.8	88.8	
		Tota		-	÷	0	0	0	0	-	0.0		0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		Min	0	0	0	0				6	2	4	ם אל		6	5	4	8	4	8	8	8	ē.	-	æ,	N	<u>.</u>	9	0	4	<u>.</u>	<u>6</u>	0		<u>.</u>	<u>.</u>	.4	2	.4	17	
		Max	15.6	1.6	25.1	96.	ę	e,	2	5	36.	62	109	196.	59.	- 60	8	22	9	12	8	11	21 12	38	15	9 16	4	25			5	- G	6	-	8 2	⊊ 0	2	4	9	4	
		Ē	1.1	0.2	4.4	8.3	9.4	0.2	0.3	5	5.5	2	4	16.8	3.0	6.6	5	3.(0.4	1.5	 0	1.	3.6	5.	'n	÷	'n	-	6		m	4		~	~	~		ניז		6	
		4	[9]		0.0	!.	8	8	-	8		9.6	8		8		1.8		0.0	0.4	\square	0.0		0	0.0		0.0]	0		8.0	8		8		<u>.</u>	.		0. 4.		
		ά Ω	1.8 1	0,0	5.8	0.0	0'0	0.0	0.0	9	3.2	6.2	0.0		1.8	0.0	20.2	3.8	0.0	2.0	2.8	1.2	14.8	0.0	0.0		0.6	5.B	-	2	25.2	10.6	0.0	50	0.0	8	0.0		7.6	0.0	
		30	0.0	0.0	5.2 2	0.0	0.0	1.6	0.0	0.0	0.0	8.0	0.4	0.0	0,0	0.0	3.8	6.8	0.0	0.0	0.6	0.0	0'0	0.0	0.0		1.2	10.8	0.0	3.4	10.0	5.8	0.0	0.0	8	8.	8.		31.4	8	
		33	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.6	6.8	5.8	0.0	00	0.0	5.6	0.0	22.8	0.0	0.0	0.0	0-0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	3.8	8	31.6	8	0:0	8	8	9; 0;	27.4	35.8	5	
		28	0.0	9.8	0.0	0.0	0.0	0.0	2.4	0.0	4.8	0.0	0.0	0.0	6.2	0.0	0.0	4.0 2	0.0	0.0	0.0	3.0	0.0	8.0	1.4	0.0	0.8	0.0	0.0	8	8	7.8	8	0.0	0.0	0.0	00	0.0	1:0	0.0	
		5 21	0.0	0.4	0.0	0.0	0.0	0.0	1.6	2.6	0.0	a '	0.0	3.6	9 ,6	0.0	0,0	16.8	0.0	0.0	0.0	0.0	0.0	7.2	0.4	0.0	7.0	0.0	0.0	8	2.8	3.8	0.0	8.2	2	0.0	80	0.0	28.2	0.0	
		5	0.0	0.0	0.0	0.0	0.0	0,0	00	0.0	0.0	00	0.6	12.4	6.2 5	00	0.0	0.0	0.0	9.6	8.8	0.0	0.6	1.0	14.8	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	6.4	8	8	0.0	0.0	0.6	0.0	
		ў. т	0.0	0.0	4	0.0	0.0	0.0	0.0	0.0	0.0	8	12	8.8 3	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	11.8	0.0	0.8	0.0	0.0	0.0	0.0	17.0	8	0	0.0	0.0	0.0	0.0	13.0	0,0	
		5	0.0	0.0	0.0	0.0	0.8	0.0	0.0	1.8	0.0	7.8	o;o	6.8 2	0.0	3.8	7.8	0.0	0'0	0.0	0.0	0.0	0.0	0.0	10.6	0.0	0.0	0.0	2.0	8	0.0	8	8	0.0	3.6	0.0	0.0	0.0	0.0	0,0	
	1 3m	й а	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0	7.8	6.6	0.0	1.8	3.8	0,0	0.0	0.0	0.2	8.6	22.0	10.4	0.0	14.2	0.0	0.0	0.0	0.0	8	0.0	0.0	0.0	3.4	3.6	0.8	0.0	0.0	2
	evation	8	0.0	0.0	7.8	5.2	0.0	0.0	0.0	0.0	2.0	0.0	0.0	1.0	0.0	0.0	8.0	6.0	0.8	0.0	0.0	1.6	0.0	0.0	0.0	16.2	0.0	0.0	0.0	0.0	9.0	8	8	0.0	11.2	0.0	0.0	7.2	0.0	0.0	Golog
	Ē	51	0.0	0.0	2.2 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	4.6	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	00	1.6	0.0	2.2	0.0	17.0	0.0	2.8	7.8	1.8	0.0	Meteo
	9'58"E	3	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.6	0.0	0.0	0.1	4.4	0.0	0.0	6.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	40.4	2.0	0.0	au of l
	151-1	8 7	0.0	0.0	9.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.2	20.4	3	3.4	0.0	0.0	1.4	11.0	11.0	0.0	9.6	2.2	0.0	0.0	0.0	0.0	00	0.0	0.0	10.4	0.0	5.8	0.0	0.6	0.0	Burea
	itude .	7	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	17.0	0.0	0.8	0.0	0.0	5.2	0.6	0.0	3.0	0.0	0.0	2.2	0.6	9,0	0.0	0.8	0.0	7.8	1.4	0.0	8.0	0.0	0.0	6.2	0.0	0.6	9.4	0.4	0.0	4.1	of the
	Long	ب ب	0.0	0.0	8.2	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	2.4	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	1.0	25.6	0.0	0.0	0'0	0.0	0.0	18.8	0.0	0.0	7.6	1.6	0.0	0.2	Office
	2"S	т. Г	0.0	1.4	4.0	0.6	3.6	0.0	0.0	0.0	0.0	13.6	0.0	3.2	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	5.2	0.0	0.0	3.8	3.0	0.0	0.0	0.0	0.0	1.4	0.0	2.4	0.0	16.4	0.0	0.0	41.2	onal (
	3°29'2	र	0.0	0.0	6.2	0.0	0,0	0.0	0.0	0.0	36.2	4.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.4	0.0	6.8	0.0	1.6	0.0	0.0	0'0	0.0	21.2	0.0	4.6	17.8	0.0	0.0	0.0	34.6	Regi
	rde 3:	÷.	0.0	0.0	0.8	0.0	0.2	0.0	0.0	0.0	0.0	2.6	0.0	1.6	0.0	0.0	1.8	öö	0.0	0.0	0.0	0.0	16.4	0.0	4.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	23.8	0.0	4.8	0.0	0.0	49.2	0.0	3.6	Vales
	Latitu	÷	3.8	0.0	0.0	7.6	24	0.0	0.0	0.0	0.0	2.4 2	0.0	6.2	0.0	0.0	0	0.0	0.0	0.0	0.0	2.4	9.8	0.0	0.0	0.0	13.8	0.0	0.0	0.0	17.8	0.0	0.0	1.6	0.0	0.0	00	10.8	11.8	0.2	outh V
	• uad	÷:	0.0	1.6	4.6	8.2: 1	9.8	0.0	5.8	0.0	0.0	0.4 E	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0	0.0	0.0	0.4	0.0	0.0	0.0	3.8	0.0	6.4	0.0	0.0	0.0	ew Sc
(T)	Still C	÷	0.0	0.0	0	1.2 8	7.6	0.0	0.0	0.0	0.0	0.0	1.4	3.6	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	3.8	0'0	28.6	0.0	0.0	0.0	0.0	8	11.6	0.0	the N
Chi	964 •	÷	0	0.0	2.4 2	4.2.8	0.6	0.0	0.0	0.0	0.0	0.0	9.2	16.8.15	0.0	6.8	0.0	0.0	0.0	12.8	0.0	0.0	0.0	0.6	0.0	0.0	13.2	0.0	0.8	0.0	31.8	0.8	2.8	0.0	0.0	0.0	0.0	0.0	8.6	0.0	00 ion in
ur	Dec 19	67	00	8.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	6.8 10	3.6 15	0.2	9.2	0.8	0.0	3.4	6.2	0.0	8.6	0.0	3.0	5.8	0.0	14.6	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	11.0	0.0	0.0	7.0	0.0	lia 20 Sect
Chi	ned I	00	00	0.0	0.0	1.4 2	0.0	0.0	0.0	1.6	0.0	0.0	0.0	6.8	4.0	0.0	5.8	00	8.0	2.6	00	10.6	5.6	24.8	15.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	66.4	1.2	Austra
Э Х	• Ope	r	c	0	0	1.2	0.0	3.8	00	0.0	0.0	0.0	4.2	3.6	0.0	0.0	0.0	0.0	00	00	0	0.0	7.0	7.6	0		0.0	50	0.0	0.8	6.2	0.0	0,0	0.0	0.0	2.4	0.0	00	0.0	0.0	h of A
Mo	Woy	(ยา	0			0.0	0.0	0	0.0	0.0	0.0	0.8	8.0	1.6	0.0	0	0.0	00	00	36	00	18	12	38.0	0	00		0.0	0.0	21.8	6.8	25.6	4	4.2	0.0	15.6	0.0	00	00	0.0	wealt and C
, YC	Woy	י (ת 2				0	0.0	0.0	0.0	0.0	4	4	0.0	3.8	0	0.0	0			6			00	26	12		00	00	0.0	0.0	0.0	10.8	0.0	8.2	0.0	6.8	9		00	0.0	nmon
Ň	cality:	9an ₄				0.0	9	0.0	0.0	2.0	0.0	0.0				203							3.8		00	00	00		0.0	0.0	0.0	6.8	0.0	1.6	8.8	24	00			4.2	
for	3 • Lo(- to					8	0.0	0.0	0.0	0.0		0	0		0				9 9			4.7	1 6			00	00	0.0	7.4	0.0	0,0	3.3	96	0	00				22	night (
ita	31318	tion					0	8	0	0	9	9	2											2 2					0.0	1.0 2	0.0	1.4	0.4		00					2 0	Copy
Ū.	ŏ	ю. 	.)ā	5 C	> c	i o	ျပ	' l o	10	0	1	10	۱°	lc	' ^c	10	16	16	19	- -	- -	· `	- -	- -	- -	1	1	1	1		1	ł	1	ł		1		1	1		

-___

Prepared by Climate and Consultancy Section in the New South Wales Regional Office of the Bureau of Contact us by phone on (02) 9296 1555, by fax on (02) 9296 1567, or by email on regnsw@bom.gov.au We have taken all due care but cannot provide any werranty nor accept any liability for this information.

يونوندي موا<u>ري</u> مواريدي

Page 2 of 4

	CLIMF	ATE	: &	С	ON:	SU	LTA	ANC	CY	F	ax	:61	L-C)2-	92	96	15	69					Ma	ar	29	,	00		17	:19	3		P	.0	3/	06	5	4
	٦	31	33	5		5	3 6	0 6	2		8	31	31	28	5	8	8	ຄ	8	31	2	31	30	31	58	31	30	31	8	5	5 6	3 6			è	, č	¥	1 of
	otal N	216.6	143.4	1/2.0	625.4	140.0	7.18	130.4	176. R	0	92.2	88.2	421.2	142.6	190.6	313.4	115.4:	306.2	22.4	39.4	0.0	17.6,	15.61	120.001	753.4	244.0	295.3	192.4	42.2	Z'ROL	0.781	36.41	25.0	56.6	102.0	100	29.4	Page
	ر ۲	0.0	0.0								00	0.0	0.0	0.0	0.0	0.0	0	8		ö	2				00	0	0.0	0.0	0,0	0.0	0.0				0		0	
	MII V	3.2	8.2	5.6	6.4		2.0	4 . 0	7.0		14 2	25.2	58.0	76.8	55.2	58.6	24.6	57.8		28.6	0	10.0	Z8.6	83.8 37.6	8.60	46.8	80.2	77.0	10.8	4.4	68.8 2 5 2	A B B	2 1	14.8	44 8		13.6	
	May	0 16	9 0	22	0.8						3.1	2.8	3.6 1!	5.1	6.1	0.4	3.7	0.2	1.0	5.1	-	0.0	5.1	1.0	26.9	79	9.8	6.2	7	0.5	- 0 0	5 C			6		=	
	Avg		4		8				ļ																2			<u>ה</u> ו	<u> </u>	 ©_['	<u>_</u> L		 ?			 হ [
	31	0.0 0		28		8.7						0	4		4 3.	5	0 0	9	0	0	0		0		2	5 G	0	.2 7	0.	0.0	3.2 24	+ 0				2		
	30	0.6		00	148.4	2.6	0					0	B 15,		5	8 17.	0.0	2	0	0	0	0		0 0	0	8 70	0	8.8	0	2	0							
	29	0.0	0.0	0.0	62.2		0.0					0	0		8	8 0.	20.	2 40.	4	0	0 0	0				13		98 01	0.	0	2 0						3.0	
	28	0.0	0.0	0.0	8.2	8	0		2 2 2			0	4	0	2 15.	4 15.	8 15.	0 18	0 9	6	0	0					0	0.0	0.0	54	4.0	2 0				5	0.0	
	27	0.0	0.0	3.6	0.0	0	0	0			5 6 9 0	0 25.	4	0	.8 55.	2 12	4	.0	0	0	0.	4	8				10	3.2	0.0	0.0	0.0	n	+			4 0.0	00	
	26	0.0	0.0	14.8	0	0	0		- -			0	8	0	8	8 32	0	0	66	0	0	9. 2	0	0		4 6	100	8.8	0.2	4	0.0	0.0					0.0	
	25	4.6	0.0	11.2	0	11.		6	6 2			0	4	0	0 10	2 14	5	0	4 11	0	0	0,0	0	8				3.8 23	0.0	3.4 4	0.0	0.0				0.8	0.0	
	24	10.8	0.0	13.2	0.0	5	3.5	0	3 26.			: e	0	0	0	8 13.	6 4	7	г 0	0	0	0 0	0	0,1°			10	2	0.0	0	0.0	0	9			8	0.0	•
Ę	23	1.8	0.0	62.6	0.0	0.0	5	ö	Ŧ				8 11.	0	0	4 11.	20	2	0	0	0	•	0	0			t 9	1.2 16	0.0	0.0	0.0	0.0	8.8	0.0		52	0.0	
ation 3	22	6.8	0.0	2.8	0.0	6	0.0	0	8.0			5 0	8	8	0	0 25.	0	8	0	0	0	0	0	9	4	2 0		4	0.0	0.0	22	0.0	0-0	0.0	0.0	6.6	0.8	Vgolo
Elevs	21	0.4	1.8	8.8	0.0	0.0	0.0	5	6	6 0			0	6 76.	4	4	9.3	8 57.	0	0	0	0	0	0	0.0		0. C	9	4.2	0.0	1.8	0.0	2.4	0.0	0'0	0.0	0.0	eteor
58"E •	20	0.0	7.2	3 23.8	0.0	0.0	0.0	0	0	-			0	0 25	8	0	2 18	0 42	0	8	0	1.0	20	0	0	2	18.0	0.0	0.8	0.7	0.0	0.0	0.0	0.0		0.0	0.0	u of M .au on.
1-195	19	0.0	0.0	16.8	4 6.1	9.0 0.0	5	0 0	0 0	0' 8			0	0	9	0	4	2	0.	6 4	0	0	.2	2		<u>+</u>	9 F	22	5.2 1	0.0	0.0	00	8	0.0		0.0	0.2	lureat n.gov matic
de 15	18	. 9.8	0.0	0.0	1.1	4 5.1	- 7	0 7	0 0	~' @		4 0		0	4	0	0	0	0	0 28	0	0	0	0.	0			0	0.0	0.0	0.0	8	0.0	0.0	0.0	8	1.8	f the E @bor is info
ngitu	17	168,2	7.8	1-	10.	à	4 32.	0	0 0	8 69.	0 ¢	1 c			8	0	6 24	0	0 0	0	0	0.0	0.0	0.0	2		4 0 4 4 4 4		0.0	0.0	4.6	0.4	8	5.8	8	0.8	7.2	fice of sqnsw for thi
3•Fc	16	0.0	7.6	0.0	0.0	0.0	0 19.	0	0	4 57.		f «			8 12	0	0.2	6	0 0	0	0	0	0.0	0.0	2				0.0	0.0	4.6	6.2 2	0.0	0.0		5.8	0.0	ial Ofi I on re I bility
29'22"	15	0.0	8	0	0	0	0	0 0	0 0	сі В				10	8 10	0	4	0	0	4	0	0	0.0	0.0	8.1	0	0.0		1.0	0.0	0.0	5.8 3	0.0	0.0	2	0.0	0.0	tegioi emai any lit
e 33°.	14	0.0	68.2	0	-0 +	0	o O	ð	o o	13.					8 32	0	8	6	0	4	0	0 . 0.	0	8	0	0	8 8		0.0	0,0	0.0	20 1	1.6	0.0	8	0.8	0.0	ales F or by cept a
atitud	13	0.0	3.6	0	23.	6	ö	0	8 0.	0					8	18	2 15	7	0	0	0	0	9	0	4	8.	9.0		0	9.2	0.0	0.0	0.0	0.0	8	0.0	0.0	rth Wi 1567, nor ac
- - -	12	00	0.0	0	3 20.	0	0	7	0 6.	0 0	0				4		9	8 15	9.	0.	0	0	1.8 28	.6	2	2	0.1		0.0	0.1	0.0	2.4	0.4	0.0	4.8	4.6	0.6	w Sot 9296 anty r
<u>م</u> ۳	÷	0	6	0	4 13.	0	o o	0	0	0		בין ב ין א					8	0	0	0	0	0.0	10.0	0.2	.6	7.4	0.0		0.0	0.0	0.0	0.0	0.0	1.8	8.6	2.8	0'0	ће Ne (02) ∕ wan
hiu 4 · St	P	C		lo lo	3 23.	0	0		0	0 0	0		0 0					2 9	0	0	0	0	0.	0	9.8	4	2	+ a	0.2	0	0.0	0.0	6.0	0.0	2.0	0.0	0.0	o n in tl ax on fe an)
о 138 С 138	,			0	F 84.0	4	0	6	6	0						8	4	. 0	0		0	0	8	2	4	.8 31	2	4 0	3.6	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	a 200 Sectio Sectio Provic
hui d De	-	c	28.8	8	13.4	0	0	0	0	ä	0									0	0	9	8	5	2 10	.8 13	2		2 2	0,0	0.0	0.0	3.8	0.0	0.0	0.0	5.8	stralls uncy 5 1555 nnot
<u>O</u>		.	82	0.0	20.2	0.6	0.0	0	0	0	0												0	8	0 10	.8 67	0 12	4 0		4	8	0.0	9.0	0.0	0.0	2.8	0.0	of Au nsulta 9296 out ce
v o Vo	ू त्रिः	, 0		0.0	17.6	4.6	5.8	127.4	0.0	0.0	0	3.0											0	2 89.	0	2	4	0 9				0	0	2	0.0	0.	0.0	d Coi (02)
S vo	. պա	, ,	00	0.0	3.8	0.2	6.2	60.6	0.0	0.0	0.0	0.0	0		2			DE C		5 7			d	31.	0	8	0	2 3				0	0	8	8	0	0	nonw ate an ne or due d
Vo) Vo	am *			00	58.2	0.0	7.4	0.2	0.0	0.8	0.0	0.0	0.0	2.0				3.0						12 0	0	8 187.	0	6 15.			o loo	0	4	0	2 9		0	Comr Clim y pho en all
Dr V	50°	,		36	61.8	0.2	22	1.0	0.0	0.0	0.0	0.0	00	46.4											0.0	2 309.	0	20,			8 25	0	0	4	0.11	0		ght© ed by t us b re tak
a fc	on t	4	10.2		12.8	00	20	0.0	0.0	0.0	0.0	8	00	104.6	3										4.(0 29.5	ő	0		- c		4	4	0	0	0		copyric repar ontac /e hav
Jat	tati	-			37.8	102.2	1.6	00	0.0	0.0	00	0-0	8		9.9	8	44								0		0	。 			2 0			0	0			
<u> </u>		H	<u>a ta</u>		5 00	1 100	0.00			100	189	8	œĺ	g []	5 L	22 1	51 5	# 18	# 18	# 18	618	618	5 1 2	5 8	15	10	1ត	Ø	စ္အ၂ ခ်	2 2	ឌ ខេ	: 18	េខ	18	18	េដ	ទាស័	

.

. .

_

(eee

	C	LIMP	41F	. &	L	UN	SUI		-11/1	L۲	۲ ۲	· ax	· D.	-02-9.	29010	009	:	1.101	20	~~	± 1	-10	••	02.	••	*
		Nbr	5	8		R I	1E	3	ñi	5 8	8	5 8	31													e 1 of
		otal	1 80.0	115.8	289.2	190.8	247.0	077	2.01	0.0	0.02	108.4	19.8													Рад
		Ĕ	0.0	0.0	0.0	0							0.0													
		ix Mi	53.8	38.4	72.4	70.4	19.6	60.4	77	28.8	4.00	26.6	18.0													
		g Ma	5.8	4	9.6	6.4	8.0	9.0	200	7.4	500	- -	0.6													
		Av				 	 			 ब्रा	 	<u> </u> . 2]												
		31	0 0		0	9		ن 9 ا		0			0.0													
		30	0		0.0	2	4			0.0	0.0		0.0													
		3 29	0.0	0	1.8	5.4	9.0	0.0	0.0	2.2	6.4	2 2	0													
		7 28	22 (1.4	3.2	0.8	4.8 2	0.0	0.0	18.8	4			Į												
	ion 3m	7. B	5.2	2.4	0.4	0.0	38.8 2	0.0	0.0	8.2	0.0	4	00													
		2	8.2	4.4	1.0	0.4	0.4	0.0	0	0.0	9															
		54	0.0	0.0	69.2	2.8	0.0	0	8	0.0	3.4	0.0	18.0													
		23	0.0	0.0	52.2	0.0	0'0	0:0	0:0	19.6	2.0	4.4														
		53	0.0	0.0	1.0	5.4	0.0	8	8	0.0	0.0	8														Лбо
	Elevati	21	0.0	1:4	0.0	70.4	0.0	8	8	4.8	8	8														teorol
	а Ш Ш Ш	20	3.2	38.4	2.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.02 0.02													of Me au n.
	1°19'5	19	20.6	12.2	12.6	0.0	5.2	0.0	0.8	0.0	0															ureau 1.gov. matio
	de 15 [.]	18	0.0	0.0	7.8	0.0	103.4	4.0.4	0 1.0	0.0	8 0'(4 8.	4 C													"the B @bon s infor
	ngitu	17	0.0	0.8	2	0.0	0.0	2 6.	0.0	0 1.1	0 3.	-														fice of iqnsw for thi
	S J J	16	0.0	0.0	5	0	0	0 25.	0.0	0	0 0	0 0														nal Off I on re ability :
	29'22	15	0	4 23.	0	4	0	0	0	0	0	0	2 3												•	Regio remai any lit
	de 33°	14	2	0	4	2	0	6.4 0	0.0	0.0	0.0	0.0	8.0													Vales , or by ccept
	Latitu	5 5	4	0.0	3.0 72	9.4 0	0.0	3.0	2.0	0.0	0.0	0.0	0.0													outh V s 1567 ' nor a
	• uəd	5	3.8 42	3.2	¥	6.8 29	0.0	8.0 1	0.0	0.0	0.0	2.0	0.0	3												lew So) 9296 Irranty
(n	Still C	÷	6.4 5	5.2	5.6	8.8 3	0.0	0.0	0.0	0.0	0.0	0.0	00	2												r the A on (02 iny we
Chi	964 •	÷	0.0	0.2	0.0	0.8 1	0.0	0.0	0.0	0.0	0.0	0.0	8													000 tion in y fax o vide a
un	Dec 1		0.0	0.6	0.0	0.6	0.0	1.8	0.4	0.0	6.2	5.2	0.0	2												alia 20 14 Sec 555, b ot pro
Ch Ch	ened	-,	000	90	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	2												Austr ultanc 296 15 16
کر (<u>о</u> .,	— «	36		00	0.6	0.0	1.8	0.2	0.0	0.0	0.0	0.0	3												Cons Cons (22) 92 (re but
Ň	y Wo	mm 5			00	17.0	9.4	60.4	0.2	0.0	0.0	7.2	0.0	20												onwe: te and te on (tue ca
Voy	ty: Wc	am (00	0.0	42	28.8	0.2	0.0	0.0	2.4	0.0	0.0												Comm Climal / phor
yr V	Locali	0 95 ,	, ,	7 0		12	50	4.3	2.2	40	0.0	0.0	0.0	8												hht©(by by t tusby e take
a fc	318 •	on t	(3.8	10	0.0	49.2	2.0		4.6	0.0	20.4	0.0												opyriç reparç ontaci hav
)at	r.061	lati.	-					10.2	00	00	00	0.0	4.4	0.0												0003

E-V-61-02-92961569 - 0

16-17 January 1988 10min Pluviograph

29/4 - 1/5 1988 - 10min Pluviograph

8-10 Feb 1992 - 15min Pluviograph

5-6 Aug 1998 - 15min Pluviograph

APPENDIX B2

HISTORICAL RECORDS - TIDE

APPENDIX B3

HISTORICAL RECORDS - DRAINAGE

RS EG: 1.2 OR .900																		1		T					
-UE PEN -L MESUERMENTS IN METE	COMMENTS	525	009	450	. 3.75	.375-	- 375	. 3.75	· 375	· 450	. 450	. 450	- 450	· 450	. 450	.450	400	-11,200	450	1.2	1.2	.375	575	· 375	525
- II BL	NOILIGN	S	z	3	~	3	Ś	3	5	ک	5	2ر	Y	ىر	\sim	M	m	M	M	à,	3	n	m	\sim	Lr.
PITS	TSIZE INLETTYPE OPENSIZE CC	D/Boy - P	$u/\beta o y(2) \cdot 8$	L/Box(4) -8	L/Bok/U) -P	Sump	L/Box (4) . 7	$L/BoV/W) \cdot P$	C. 20x . 7	(. 18 or .)	L/BOY . 7	C. 10017	L/BOY .7	LMOX .7	C. Bar B7	$L \left[\mathcal{B}_{PK}(\mathcal{V}) \cdot \mathcal{I} \right]$	UBarito . 7	SUMP	UBALI	.9 DCC1 2	SUMN	~ (n) ~) ~	L(Box 1.3	L (0 0 () - 3	1 S. (c) 200)1
MAP No 287 È	SIZE DEPTH INLE	J. (.)	5.1 2.1	1.7. 1.2.	,1.1 7.1	1.1	1.1 1.7	6. L.I		1.1 2.1	1.1 1.6.	1.1.	· · ·	5.1 1.1	(1) 7.1	くい	51.1	1.1	2.1 2.1	2-4 1.5	5.7 5.1	1 7.1	8.	2- 1	1.1 2.1
18-2-37	NEW ASSETID	1		, 2, 2,		1-		~~~ ~~	2	200	() () ()	101	102		- Port	105	1010		C C S	69	er,	16,7	27	51	

میں اور		,	••••••	•								.	. .						:	:		, :	1	1	· · · · · · · · · · · · · · · · · · ·	·
GREEN PEN ALL MESUERMENTS IN METERS EG: 1.2 OR .900	COMMENTS																									
PES																										-
	CONDITION	3	3	ñ	n	6	£	ĥ	m	m	ŵ	ω	M	IJ	5	5	5	5	5	5	5	S	5	5	5	5
· 	DEPTH DOWN	9.1	9.1	1.5	1.5	1.2	-	•••••		&.		1.1		1	1.4	1 - 4	1.3	1.4	1.3	1.5		1.7	1.3	١٠٢	1.2.	
218	DEPTH UP	7	1.6	9.1	1.5	1.5		-	8.	Ņ	1 - 1	1.2	-	1.4	1.4	1.3	۰.t	1 . 3	1.5		L .1	1.3	1.2	1 . 2	1	Š,
1AP No 2	DIAMETER	÷5	9.	1.2	1.2	1.05	.375	375	.375	:3-5	.3.75	-375	325.	9.	548.	, Q	9.	9.	٩.	• 45	.45	- 45	54.	375 46	545.	375
12/07 N	NEW_ASSETID	176	ل ل ا	84	هر	80	18	82	83	184	1 85	86	187	88/	68/	06	ال <i>ح</i> `	192	1,93	1 9ct	sp (8	6)	, 98 .	66	/ lev

GREEN PEN ALL MESUERMENTS IN METERS EG: 1.2 OR .900	COMMENTS																	· •								
PIPES	NOILICIN	3	3	3	3	33	3	3	х	2	m	ъ	6	~	3	r	ñ	3	3	m	5	5	ß	3	3	<u>ત</u>
	DEPTH DOWN CO	-	-			1-3	6.	-	-	1.3	1.2		~	1.3	1 · {	£ ·]	1.3	6.	1.3	1.5	1.6	5	1.5	1.5	1.1	ر. ۲
8-18	DEPTH UP		-	-	1.3	٩.	~	•	ŗ	5.	1.3	8	4.1	<u>.</u> .	1.3	1.1	6.	-	1.3	1.3	2.1	1.6	5	5.1	5.1	1.7
MAP No 2	DIAMETER	315.	225.	54.	.45	st.	54.	.45	?rs.	.375	9.	375	9.	-375	.375	.375	.375	SLE.	:45	.45	.45	÷	.45	54.	54.	20.
28/2/97	UIT: ASSI , MEW	51	25	53	/ 54	55	156	121	J_58	1 59	60	61	62	63	64	65	66	101	89 /	69'	OL X	14	24	560	- hú/	5-2-1

COMMENTS																				NF				
NOILIGNO	5 Ar	 m	e	m	~	2	3	33	m	M	S	ŝ	S	5	M	3	Μ	m	л	s	3	3	\mathcal{C}	ς Ω
DEPTH C	ठ-	 ∞ ·		-	*	-		ł	Ņ	12.	~		1:7	1.1		Ņ	-	-		-	6.	ۍ ۲	· 5	
O OF PIPES	2					-	-	-		i	~	·	-		-	-	-	ł	-	-			1	
ANTERIAL N	C.	C	U	Ú	U	U	U	STONE	J	GIONT.	STONE	STONE			STONE	S-LONK	STONE	STONE	C	V	U	Ú	U	C
IPE DIAMETEK P	<u>ن</u>		· 45	542.	545.	517.	- 375 -	9.	.375	1.05	. 375	502.	2.4 4 1 136 8	5	562.	50%	7.2.	. 3n5	٠).	SLS.	9.	515.	-305	<i>o</i>).
I CILLEISSV		4	ci M	+	· 52	l Q	5	∞	6	01	-	21	13 1.5	14	12	16.	5	1,8	10	0%	2.1	Ca	CCC.	110

	ALL U ALL MESUERMENTS IN METERS EG: 1.2 C COMMENTS														
	NOITIONO	M	S	S							 -				
		.2.1	C	1.7					•						
- B B B B		2.23	L - 1	(.7		 									
	HEICHT.	X		· 											
IAP No	IIIKIIM	رب •	$\gamma \cdot Q$.	2.4											
	(ILLEISSA, W.	,	C1	1 20					,						
DATE VE	IN CITTASA	>				 	 	 							

0													· ,	,	. т	- 1	ī	· 1		· 1	 1	 	•
OR .90			ŝ,																				
:G: 1.2																							
TERS E	S	- 1	ł	I	1	1	1	1															1
	COMMENT			-																			
MENTS	Ŭ																						
PEN ESUER	metar		S.	5	57	52	ZZ ZZ	۲. ۲	<i>بر</i> /	2;	00	00	00	00	750	575	:25	:25	00				
ALL ME	N Duy	· 60(· 67	· 67	- 67	<i>.</i>		° 6°	. 67	S.	9					_		S			 	 	
	OITIONO	ς	ζ	8	\sim	Μ	~	3	<i>j</i> w	م	M	4	4	4	7	R	5	5					
S L	ENSIZE C	ĥ.	4	4	Ś	_				ſ.	9.	9		9	/	ý	5	5.	ふ				
PL	TPE OPI	(3)	(7)	ઉ	6	8	alung	de	di	or(2)	sk(2)	, , ,	i	2	0,0	<u>م</u>	300	X X	204				
-	INLETTY	L/Box	L/Bar	L/Bor	L/B0	ilBc	H H	Sun	SUN	r/B	. Clg	100	CKA	LB	د//	L B		L'A	う		 	 	
-	ETSIZE												مل			•							
413	INI INI			7		-	21.	()	61.	~	2.1		Ĺ	ġ	۵.	÷	ナ	5	و	+		 +	
10 T	DEPTH	~. I			<u>ب</u>	-												} 	-			 	
MAP	SIZE	1.1	1.1	<u>-</u> -	<u>د</u> 	1.5	1-	「 ン -	- - -	, - -	いい	1.1	¢\$		h		1.1			1		 	
- 1	SSETID				4	5	5	1	-&	5	0	==		2	+	2	10	5	12				
191.	NEWA										<u> </u>			\setminus		\sum	<u>)</u>				 	 	

S RED PEN ALL MESUERMENTS IN METERS EG: 1.2 OR	COMMENTS										··•				
ALL	S	4	4	+	5										-
M		-	Ń		1.5										
EAI	NO OF PIPES	-		6	2				•						
H -	STCINE	-1-	с	ວ :	Ú				•						
<u>ر ۲۹٬۰۰ میں مرکب میں م</u>	· 525	ڢ	· 45	56.	.525										
MA <u>(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>		4	√3	14	V 5										
TE 28						 							 		

•	LI	1	1	1	L	1	1	I	L	L	L	1	I	I	1	1	I	4		1		I	Į	ĮI	
2 OR	IE LOTS																					T	••.		
EG: 1.	TIE 2 T																								
TERS	TS 2ND																							فيحتمد بالمر	
N ME	ITIE LO																								· · ·
ENTS	ST TIE														-9										
LEN JERMI	IS NO																								
EEN P	DFF LOT	-		•																					
GRI	BNDRY (
S	ON TO													Ţ											
PH	I OFF I																								
PI	STREET																								
	NOILICIN	M	м	3	m	m	33	m	5	5	б	3	at-	4	4	4	4	Ś	S	S	S	ۍ			
w/	WN CO																							<u>`</u>	
-	OCI II LAIC	1 • [1.4	2.1	1 - 1		1.1	1 • 1		~	1.1	-	0.	۲.	.8	-			1.4	4	1.6	2.1			
Z87 D	TILUP I	٩	1 • 1	4			1.	-	~		.3		Ś	6	ė	.8	8	ţ	Ņ	.4	4	9			
P No	T DEP	•		-	64			1.	-					-			•	-		~	\ 				
MA	OFFSE																						 		
2 97	IAMETER	ģ	é X	675	513.	.6X	563.	569.	.525	.525	Ģ	9.	.45	3.35.6	é	Ķ	15	375	525.	525.	· 525	9.			
TTE 28	SETID L		2	S	t	s	e,	2	8	5	01	11	12	13	14	ST) Î (c	cí/	18	61	120	121			

APPENDIX C

RAFTS SUB-CATCHMENT PARAMETERS

Catchment	Pervious Area (ha)	Impervious Area (ha)	Slope (%)	Pervious Roughness	Impervious Roughness	Lag Time (min)
A	7.99	0.11	20.9	0.08	0.015	0.4
B2	0.43	0.35	23.1	0.025	0.015	0
B1	12.5	0.33	23.1	0.08	0.015	0.7
E2B	0.43	0.35	20.7	0.025	0.015	0
E1B	0.35	0.02	20.7	0.08	0.015	0.7
C1	10.12	0.2	20	0.08	0.015	0
С	N/A	N/A	20	0.08	N/A	1.3
D2	1.44	1.18	17	0.025	0.015	0
E2A	0.43	0.35	20.7	0.025	0.015	0
E1A	0.35	0.02	20.7	0.08	0.015	1.5
F	1.51	1.24	19.5	0.025	0.015	0
D1	2.97	0.17	17	0.08	0.015	0
D	N/A	N/A	17	0.08	N/A	0
G	0.51	0.42	24	0.025	0.015	0
Basin	0.39	0.1	1.7	0.025	0.015	0

_

.

.

APPENDIX D

RAFTS OUTPUT FILES AND EXPORT HYDROGRAPHS

***** RUNTIME RESULTS *** Max. no. of links allowed = 280 Max. no. of routng increments allowed = 600 Max. no. of rating curve points = 200 Max. no. of storm temporal points = 2000 Max. no. of channel subreaches = 55 Max link stack level = 20 Input Version number = 400 **** Turo Creek Flood Study - 100 Year Average Recurrence Interval Results for period from 0: .0 1/ 1/1990 to 8:20.0 1/ 1/1990 *** ROUTING INCREMENT (MINS) = 1.00 STORM DURATION (MINS) 90. -----RETURN PERIOD (YRS) 100. = 1.0000 BX TOTAL OF FIRST SUB-AREAS (HA) 39.42 TOTAL OF SECOND SUB-AREAS (HA) = 4.84 TOTAL OF ALL SUB-AREAS (HA) 44.26 SUMMARY OF CATCHMENT AND RAINFALL DATA Link Catch. Area Slope % Impervious Pern В Link #1 #2 #2 #1 #2 #2 #1 #2 No. #1 #1 Label (%) (%) (hectares) .0413 .0001 7.990 .1000 99.90 .080 .015 1.000 .1100 20.90 20.90 А .3500 .4300 23.10 23.10 .1000 99.90 .025 .015 .0035 .0002 2.000 B2 .1000 99.90 12,500 .3300 23.10 23.10 .080 .015 .0495 .0002 1.001 В1 .0037 .0002 .1000 99.90 20.70 20.70 .025 .015 3.000 .4300 .3500 E2B .0200 20.70 20.70 .1000 99.90 .080 .015 .0082 0.000 3.001 .3500 E1B .2000 20.00 20.00 .1000 99.90 .080 .015 .0477 .0001 3.002 10.120 C1 .00 .1000 .0000 .080 1.002 20.00 .0000 .0004 .0000 .00100 .000 C .1000 99.90 1.180 17.00 17.00 .025 .015 .0076 .0004 4.000 1.440 D2 .4300 20.70 20.70 .1000 99.90 .025 .015 .0037 .0002 5.000 .3500 E2A .0082 0.000 20.70 20.70 .1000 99.90 .080 .015 5.001 .3500 .0200 E1A 19.50 19.50 .1000 99.90 .025 .015 .0073 .0004 5.002 1.510 1.240 F 17.00 17.00 .080 .015 .0273 .0001 4.001 2.970 .1700 .1000 99.90 D1 .080 .00 .0004 .0000 1.003 .00100 .000 17.00 .0000 .1000 .0000

.1000 99.90

.1000 99.90

.025 .015

.025 .015

.0037 .0002

.0122 .0003

6.000

1.004

.4200 24.00 24.00

.1000 1.700 1.700

D

G

BASIN

.5100

.3900

> ROUTING INCREMENT (MINS) = 1.00 STORM DURATION (MINS) = 120. RETURN PERIOD (YRS) = 100. ΒX = 1.0000 39.42 TOTAL OF FIRST SUB-AREAS (HA) = TOTAL OF SECOND SUB-AREAS (HA) = 4.84 TOTAL OF ALL SUB-AREAS (HA) = 44.26

Link	Average	Init.	Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Label	Intensity	y #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(n	am)	(mm.	/h)	(m	n)	(m^3/s)	Peak	(mins)
А	57.200	25.00	5.000	5.000	2.500	81.317	104.65	2.749	43.00	.4000
в2	57.200	25.00	5.000	5.000	2.500	81.317	104.65	.4860	34.00	.0000
в1	57.200	25.00	5.000	5.000	2.500	81.317	104.65	7.046	43.00	.7000
E2B	57.200	25.00	5.000	5.000	2.500	81.317	104.65	.4814	34.00	.0000
E1B	57.200	25.00	5.000	5.000	2.500	81.317	104.65	.6440	35.00	.7000
C1	57.200	25.00	5.000	5.000	2.500	81.317	104.65	3.674	41.00	.0000
С	57.200	25.00	.0000	5.000	.0000	81.317	.000	10.611	44.00	1.300
D2	57.200	25.00	5.000	5.000	2.500	81.317	104.65	1.544	35.00	.0000
E2A	57.200	25.00	5.000	5.000	2.500	81.317	104.65	.4814	34.00	.0000
E1A	57.200	25.00	5.000	5.000	2,500	81.317	104.65	.6440	35.00	1.500
F	57.200	25.00	5.000	5.000	2.500	81.317	104.65	2.189	35.00	.0000
D1.	57.200	25.00	5,000	5.000	2.500	81.317	104.65	3.397	35.00	.0000
D	57.200	25.00	.0000	5.000	.0000	81.317	.000	12.550	42.00	.0000
G	57.200	25.00	5.000	5.000	2.500	81.317	104.65	.5776	34.00	.0000
BASIN	57.200	25.00	5.000	5.000	2.500	81.317	104.65	14.064	42.00	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to [.]	Outflow	Inflow	Vol.	Vol.	Stage
,	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	42.00	14.06	49.00	11.81	37064.7	.0000	2738.8	1.4006

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

Shoot 5 **** RUNTIME RESULTS Max. no. of links allowed = 280 Max. no. of routng increments allowed = 600 Max. no. of rating curve points = 200 Max. no. of storm temporal points = 2000 Max. no. of channel subreaches = 55 Max link stack level = 20 400 Input Version number = ***** Turo Creek Flood Study - 20 Year Average Recurrence Inverval Results for period from 0: .0 1/ 1/1990 to 8:20.0 1/ 1/1990 *** 1.00 ROUTING INCREMENT (MINS) = STORM DURATION (MINS) == 120. RETURN PERIOD (YRS) = 20. 1.0000 BX TOTAL OF FIRST SUB-AREAS (HA) = 39.42 TOTAL OF SECOND SUB-AREAS (HA) = 4.84 TOTAL OF ALL SUB-AREAS (HA) 44.26 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area Slope % Impervious Pern Link в Link #2 #1 #2 #1 #2 #1 #2 #1 No. #1 #2 Label (8) (8) (hectares) .0413 .0001 1.000 7.990 .1100 20.90 20.90 .1000 99.90 .080 .015 Α .4300 .3500 23.10 23.10 .1000 99.90 .025 .015 .0035 .0002 2.000 B2 .0495 .0002 12.500 .3300 23.10 23.10 .1000 99.90 .080 .015 1.001 В1 .0037 .0002 20.70 20.70 .1000 99.90 E2B .4300 .3500 .025 .015 3.000 .3500 .080 .015 .0200 20.70 20.70 .1000 99.90 .0082 0.000 3.001 E1B 20.00 20.00 .1000 99.90 .080 .015 .0477 .0001 10.120 .2000 3.002 C1 .00 .00100 .000 20.00 .0000 .1000 .0000 .080 .0004 .0000 1.002 С 17.00 17.00 .025 .015 .0076 .0004 1.180 .1000 99.90 4.000 1.440 D2 .4300 .3500 20.70 20.70 20.70 20.70 .0037 .0002 .1000 99.90 .025 .015 5.000 E2A .0200 20.70 20.70 .1000 99.90 1.240 19.50 19.50 .1000 99.90 5.001 .3500 .080 .015 .0082 0.000 E1A 1.510 .025 .015 .0073 .0004 5.002 F .1700 17.00 17.00 .1000 99.90 .080 .015 .0273 .0001 2.970 4.001 D1. .000 17.00 .0000 .1000 .0000 .080 .00 .0004 .0000 1.003 .00100 D .0037 .0002 .5100 .4200 24.00 24.00 .1000 99.90 .025 .015 6.000 G .3900 .1000 1.700 1.700 .1000 99.90 .025 .015 .0122 .0003 1.004 BASIN

-

** RUNTIME RESULTS ** Max. no. of links allowed = 280 Max. no. of routng increments allowed = 600 Max. no. of rating curve points = 200 Max. no. of storm temporal points = 2000 Max. no. of channel subreaches = 55 Max link stack level = 20 Input Version number = 400 **** Turo Creek Flood Study - 5 Year Average Recurrence Inverval Results for period from 0: .0 1/ 1/1990 to 8:20.0 1/ 1/1990 *** ROUTING INCREMENT (MINS) = 1.00 STORM DURATION (MINS) 120. -5. RETURN PERIOD (YRS) 1.0000 BX TOTAL OF FIRST SUB-AREAS (HA) = 39.42 TOTAL OF SECOND SUB-AREAS (HA) = 4.84 44.26 TOTAL OF ALL SUB-AREAS (HA)

shoot 7

SUMMARY OF CATCHMENT AND RAINFALL DATA Link Catch. Area Slope % Impervious Pern в Link #1 #1 #1 #2 #1 #2 #1 #2 #2 #2 No. Label (8) (୫) (hectares) 7.990 .1100 20.90 20.90 .1000 99.90 .080 .015 .0413 .0001 1.000 А .1000 99.90 .025 .015 .0035 .0002 2.000 .4300 .3500 23.10 23.10 B2 .0495 .0002 .0037 .0002 12.500 .3300 23.10 23.10 .1000 99.90 .080 .015 1.001 в1 .4300 .3500 20.70 20.70 .1000 99.90 .025 .015 3.000 E2B .0082 0.000 20.70 20.70 .1000 99.90 E1B .3500 .0200 .080 .015 3.001 .1000 99.90 .2000 20.00 20.00 .080 .015 .0477 .0001 3.002 10.120 C1 .00100 .000 20.00 .0000 .1000 .0000 .080 .00 .0004 .0000 1.002 С .1000 99.90 .025 .015 .0076 .0004 4.000 1.440 1.180 17.00 17.00 D2 .3500 .1000 99.90 .4300 20.70 20.70 .025 .015 .0037 .0002 5.000 E2A .1000 99.90 .3500 .0082 0.000 .0200 20.70 20.70 .080 .015 5.001 E1A .1000 99.90 .025 .015 .0073 .0004 5.002 1.510 1.240 19.50 19.50 F .1000 99.90 .0273 .0001 4.001 .1700 17.00 17.00 .080 .015 2.970 D1 .00100 .1000 .0000 .080 .00 .000 17.00 .0000 .0004 .0000 1.003 D .1000 99.90 .5100 .4200 24.00 24.00 .025 .015 .0037 .0002 6.000 G .1000 99.90 .025 .015 .0122 .0003 1.004 .3900 .1000 1.700 1.700 BASIN

**** RUNTIME RESULTS Max. no. of links allowed = 280 Max. no. of routng increments allowed = 600 Max. no. of rating curve points = 200 Max. no. of storm temporal points = 2000 Max. no. of channel subreaches = 55 Max link stack level = 20 400 Input Version number = Turo Creek Flood Study - PMF Results for period from 0: .0 1/1/1990 to 8:20.0 1/ 1/1990 ROUTING INCREMENT (MINS) = 1.00 STORM DURATION (MINS) _ 15. RETURN PERIOD (YRS) -1015. BX 1,0000 TOTAL OF FIRST SUB-AREAS (HA) = 39.42 TOTAL OF SECOND SUB-AREAS (HA) = 4.84 TOTAL OF ALL SUB-AREAS (HA) = 44.26 SUMMARY OF CATCHMENT AND RAINFALL DATA Catch. Area Slope % Impervious Pern Link Link в #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 No. Label (hectares) (8) (8) 7.990 .1100 20.90 20.90 .1000 99.90 .080 .015 .0413 .0001 1.000 А .0035 .0002 .0495 .0002 .4300 .3500 23.10 23.10 .1000 99.90 .025 .015 2.000 B2 12.500 .3300 23.10 23.10 .1000 99.90 B1 .080 .015 1.001 .4300 .3500 20.70 20.70 .025 .015 .0037 .0002 3.000 .1000 99.90 E2B .3500 .0200 20.70 20.70 .1000 99.90 .080 .015 .0082 0.000 3.001 E1B .2000 10.120 20.00 20.00 .1000 99.90 .0477 .0001 3.002 .080 .015 C1 20.00 .0000 .00100 .000 .1000 .0000 .080 .00 .0004 .0000 1,002 С .0076 .0004 .0037 .0002 17.00 17.00 1.440 1.180 .1000 99.90 .025 .015 D2 4.000 .4300 .3500 20.70 20.70 .1000 99.90 .025 .015 5.000 E2A .0082 0.000 5.001 .3500 .0200 20.70 20.70 .1000 99.90 .080 .015 E1A 1.510 1.240 19.50 19.50 .1000 99.90 .025 .015 .0073 .0004 5.002 F 2.970 .1700 17.00 17.00 .1000 99.90 .080 .015 .0273 .0001 4.001 D1 .00100 .000 17.00 .0000 .1000 .0000 .080 .00 .0004 .0000 1.003 D .1000 99.90 .5100 .4200 24.00 24.00 .025 .015 .0037 .0002 6.000 G .1000 1.700 1.700 .3900 .1000 99.90 .025 .015 .0122 .0003 1.004 BASIN

C	480 00 25 00 5,000	5,000 2,500 2	12.75 233.75	1.815 7.000 .00	00
BASIN	480.00 25.00 5.000	5.000 2.500 2	12.75 233.75 6	6.352 19.00 .00	00
-					
SIII	MARY OF BASIN RESUL	TS			
001					
Link	Time Peak Time	Peak Tota	1 B	asin	
Label	to Inflow to	(m^3/s) (m^3	W VOI.	VOL. Stage Used Used	
BASIN	19.00 66.35 22.00	64.33 94960	.2 .0000 2	2175.1 3.0331	
					·
SUL	AMARY OF BASIN OUTLE	T RESULTS			
Link	No. S/D D	ia Width :	Pipe Pipe		
Label	of Factor	L	ength Slope		
	(m) (20 2.000	m) (m) .000 20	(m) (3)		
BASIN	2.0 2.000				
#########	\$#####################################	*****	******	*****	*****
Turo cree	ak Fiood Buddy The				
Results i	for period from 0:	.0 1/ 1/1990			
<u>ппппп</u> ннн	to 8:2	0.0 1/ 1/1990 #####################	*****	*************	############
########			r a a a a a a a a a a a a a a a a a a a		
		ROUTING INCRE	MENT (MINS) =	1.00	
		RETURN PERIOD	(YRS) =	1045.	
	·	BX .	=	1.0000	
		TOTAL OF FIRST	SUB-AREAS (H	A) = 39.42	
		TOTAL OF SECON	ND SUB-AREAS (HA) SUB-AREAS (HA)	(A) = 4.84 = 44.26	
			· · · · · · · · · · · · · · · · · · ·		
	Tuit Toos	Cont Tonn I	Russes Daim D	ank Mima Ti	- 1-
Link	Average Init. Loss Intensity #1 #2	#1 #2	± 1 ± 2 In:	flow to L	
Daner -	(mm/h) (mm)	(mm/h)	(mm) (m	^3/s) Peak (min	ns)
A .	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88 1	2.094 20.00 .400	00
B2	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	1.323 $8.000.000$	
B1 E2B	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	1.317 8.000 .000	00
E1B	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	1.836 13.00 .700	00
C1	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88 1	6.739 21.00 .000	00
C .	413.00 25.00 .0000	5.000.0000 28	31.25 .000 49 81 25 302 88	9.019 21.00 1.30	00
D2 524	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	1.317 8.000 .000	00
EIA	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	1.836 13.00 1.50	00
F	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	6.452 15.00 .000	00
D1	413.00 25.00 5.000	5.000 2.500 28	$31.25 \ 302.88 \ 1321 \ 25 \ 000 \ 6^{\circ}$	3.907 16.00 .000	00
D	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88	1.572 8.000 .000	00
BASIN	413.00 25.00 5.000	5.000 2.500 28	31.25 302.88 6	4.136 21.00 .000	00
SUL	MARY OF BASIN RESUL	rs			
Link	Time Peak Time	Peak Tota	L Ba	asin	
Label	to Inflow to	Outflow Inflow	v Vol.	Vol. Stage	
	Peak (m^3/s) Peak	(m^3/s) (m^3)	Avail	Used Used	
BASIN	21.00 04.14 24.00	02.30 12342.		2023.0 3.0214	

Sheet 1

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
20202		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

> 1.00 ROUTING INCREMENT (MINS) = 90. STORM DURATION (MINS) = RETURN PERIOD (YRS) = 1090. 1.0000 ВΧ ----TOTAL OF FIRST SUB-AREAS (HA) = 39.42 TOTAL OF SECOND SUB-AREAS (HA) = 4.84 TOTAL OF ALL SUB-AREAS (HA) = 44.26

00

Link	Average	Init.	Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Label	Intensity	/ #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(n	nm)	(mm,	/h)	(m	n)	(m^3/s)	Peak	(mins)
А	313.00	25.00	5.000	5.000	2.500	437.42	460.79	9.756	28.00	.4000
B2	313.00	25.00	5.000	5.000	2.500	437,42	460.79	1.085	13.00	.0000
B1	313.00	25.00	5.000	5.000	2.500	437.42	460.79	26.138	30,00	.7000
E2B	313.00	25.00	5.000	5.000	2.500	437.42	460.79	1.083	13.00	.0000
E1B	313.00	25.00	5.000	5.000	2.500	437.42	460.79	1.496	13.00	.7000
C1	313.00	25.00	5.000	5.000	2.500	437.42	460.79	13.806	31.00	.0000
C	313.00	25.00	.0000	5.000	.0000	437.42	.000	39.945	31.00	1.300
D2	313.00	25.00	5.000	5.000	2.500	437.42	460.79	3.591	13.00	.0000
E2A	313.00	25.00	5.000	5.000	2.500	437.42	460.79	1.083	13.00	.0000
E1A	313.00	25.00	5.000	5.000	2.500	437.42	460.79	1.496	13.00	1.500
F	313.00	25.00	5.000	5.000	2.500	437.42	460.79	5.096	13.00	.0000
D1	313.00	25.00	5.000	5.000	2.500	437.42	460.79	10.558	24.00	.0000
D	313.00	25.00	.0000	5.000	.0000	437.42	.000	50.485	31.00	.0000
G	313.00	25.00	5.000	5.000	2.500	437.42	460.79	1.293	13.00	.0000
BASIN	313.00	25.00	5.000	5.000	2.500	437.42	460.79	53.297	31.00	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	31.00	53.30	32.00	53.11	194698.	.0000	21281.3	3 2.9580

Link Label	No. of	S/D Factor	Día	Width	Pipe Length	Pipe Slope
Duber		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

Sheet 15

Link	Average Ini	t. Loss	Cont.	Loss	Exces	s Rain	Peak	Time	Link
Label	Intensity #1	. #2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h) (mm)	(mm	/h)	(m	n)	(m^3/s)	Peak	(mins)
А	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.4648	772.5	.4000
B2	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.0640	760.0	.0000
B1	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	1.231	770.0	.7000
E2B	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.0638	760.0	.0000
E1B	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.0878	760.0	.7000
C1	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.6442	770.0	.0000
c	-1.000 25.0	0.0000	5.000	.0000	57.292	.000	1.876	770.0	1.300
D2	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.2127	760.0	.0000
E2A	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.0638	760.0	.0000
E1A	-1.000 25.0	0 5.000	5.000	2.500	57.292	98,208	.0878	760.0	1.500
F	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.3058	760.0	.0000
D1	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.3726	760.0	.0000
D	-1.000 25.0	0 .0000	5.000	.0000	57.292	.000	2.197	772.5	.0000
G ·	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	.0763	760.0	.0000
BASIN	-1.000 25.0	0 5.000	5.000	2.500	57.292	98.208	2.507	770.0	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	770.0	2.507	772.5	2.484	27252.4	.0000	252.07	.4900

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia '	Width	Pipe Length	Pipe Slope
;		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

> ROUTING INCREMENT (MINS) = 10.00 STORM DURATION (MINS) = 3110. RETURN PERIOD (YRS) 8805. == ΒX 1.0000 = TOTAL OF FIRST SUB-AREAS (HA) = 39.42 TOTAL OF SECOND SUB-AREAS (HA) = 4.84 TOTAL OF ALL SUB-AREAS (HA) = 44.26

Link	Average	Init.	Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Label	Intensity	#1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(п	m)	(mm	/h)	(mr	n)	(m^3/s)	Peak	(mins
А	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.8517	2880.	.4000
В2	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.1024	2880.	.0000
B1	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	2.271	2880.	.7000
E2B	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.1021	2880.	.0000
E1B	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.1468	2880.	.7000
C1	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	1.204	2880.	.0000
С	-1.000 2	25.00	.0000	5.000	.0000	288.38	.000	3.474	2880.	1.300
D2	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.3377	2880.	.0000
E2A	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.1021	2880.	.0000
ElA	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.1468	2880.	1.500
F	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.5003	2880.	.0000
D1	-1.000 2	25.00	5.000	5.000	2.500	288.38	379.38	.6802	2880.	.0000
D	-1.000 2	25.00	.0000	5.000	.0000	288.38	.000	4.155	2880.	.0000
G	-1.000 2	5.00	5.000	5,000	2.500	288.38	379.38	.1218	2880.	.0000
BASIN	-1.000 2	15.00	5.000	5.000	2.500	288.38	379.38	4.834	2880.	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Üsed
BASIN	2880.	4.834	2880.	4.661	131889.	.0000	471.62	.7422

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

ROUTING INCREMENT (MINS)	-	7.50	
STORM DURATION (MINS)	=	3210.	
RETURN PERIOD (YRS)	=	9202.	
BX	-	1.0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREAS	5 (HA)	=	4.84
TOTAL OF ALL SUB-AREAS (F	IA)	=	44.26

ROUTING INCREMENT (MINS)		5.00	
STORM DURATION (MINS)	=	1770.	
RETURN PERIOD (YRS)	=	9808.	
BX	=	1.0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREAS	5 (HA)	=	4.84
TOTAL OF ALL SUB-AREAS (H	IA)	=	44.26
	•		

Sheet

Link	Average	Init.	Loss	Cont.	Loss	Exces	s Rain	Peak	Time	Link
Label	Intensity	/ #1	#2	#1	#2	#1	#2	Inflow	to	Lag
_	(mm/h)	(n	nm)	(mm	/h)	. (m	n)	(m^3/s)	Peak	(mins)
А	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.4007	990.0	.4000
B2	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.0624	765.0	.0000
B1	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	1.064	990.0	.7000
E2B	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.0621	765.0	.0000
E1B	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.0810	765.0	.7000
C1	-1.000	25.00	5.000	5.000	2,500	68.667	108.62	.5539	990.0	.0000
С	-1.000	25.00	.0000	5.000	.0000	68.667	.000	1.618	990.0	1.300
D2	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.2043	765.0	.0000
E2A	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.0621	765.0	.0000
E1A	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.0810	765.0	1.500
F	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.2976	765.0	.0000
D1	-1.000	25.00	5.000	5,000	2.500	68.667	108.62	.3437	975.0	.0000
D	-1.000	25.00	.0000	5.000	.0000	68.667	.000	1.900	990.0	.0000
G	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	.0744	765.0	.0000
BASIN	-1.000	25.00	5.000	5.000	2.500	68.667	108.62	2.174	980.0	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	~~
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	980.0	2.174	980.0	2.192	32260.5	.0000	220.17	.4502

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
20242		(m)	(m)	(m)	(m)	(%) [.]
BASIN	2.0	2.000		.000	20.000	.2000

. .

	1	5
\leq	+	
	221	

Average	Init	. Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Intensity	y #1	#2	#1	#2	#1	#2	Inflow	to	Lag
(mm/h)	(г	nm)	(mm,	/h)	(mr	n)	(m^3/s)	Peak	(mins)
68.100	25.00	5.000	5.000	2.500	70.900	93.650	2.546	35.00	.4000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	.5093	29.00	.0000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	6.455	35.00	.7000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	.5066	29.00	.0000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	.7007	30.00	.7000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	3.469	31.00	.0000
68.100	25.00	.0000	5.000	.0000	70.900	.000	9.727	36.00	1.300
68.100	25.00	5.000	5.000	2.500	70.900	93.650	1.649	30.00	,0000
68.100	25.00	5.000	5.000	2.500	70,900	93.650	.5066	29.00	.0000
68,100	25.00	5.000	5.000	2.500	70.900	93.650	.7007	30.00	1.500
68.100	25.00	5.000	5.000	2.500	70.900	93.650	2.371	30.00	.0000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	3.990	30.00	.0000
68.100	25.00	.0000	5.000	.0000	70.900	.000	11.911	32.00	.0000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	.6082	29.00	.0000
68.100	25.00	5.000	5.000	2.500	70.900	93.650	13.450	32.00	.0000
	Average Intensit (mm/h) 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100 68.100	Average Init Intensity #1 (mm/h) (r 68.100 25.00 68.100 25.00	Average Init. Loss Intensity #1 #2 (mm/h) (mm) 68.100 25.00 5.000 68.100 25.00 5.000	AverageInit. LossCont.Intensity#1#2#1(mm/h)(mm)(mm,68.10025.005.000	AverageInit. LossCont. LossIntensity#1#2#1#2(mm/h)(mm)(mm/h)68.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0005.0002.50068.10025.005.0002.50068.10025.005.0002.50068.10025.005.0002.50068.10025.005.0002.500	AverageInit. LossCont. LossExcessIntensity#1#2#1#2#1(mm/h)(mm)(mm/h)(mm/h)(mm68.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.90068.10025.005.0005.0002.50070.900 <td>AverageInit. LossCont. LossExcess RainIntensity#1#2#1#2#1#2(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)68.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.650<!--</td--><td>AverageInit. LossCont. LossExcess RainPeakIntensity#1#2#1#2#1#2Inflow(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)(m^3/s)68.10025.005.0005.0002.50070.90093.6502.54668.10025.005.0005.0002.50070.90093.650.509368.10025.005.0005.0002.50070.90093.650.509368.10025.005.0005.0002.50070.90093.650.506668.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.6503.46968.10025.005.0005.0002.50070.90093.6501.64968.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.31168.10025.005.0005.0002.50070.90093.650.6082</td><td>AverageInit. LossCont. LossExcess RainPeakTimeIntensity#1#2#1#2#1#2Inflowto(mm/h)(mm)(mm/h)(mm)(m^3/s)Peak68.10025.005.0005.0002.50070.90093.6502.54635.0068.10025.005.0005.0002.50070.90093.650.509329.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.700730.0068.10025.005.0005.0002.50070.90093.6501.64931.0068.10025.005.0005.0002.50070.90093.6501.64930.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.000</td></td>	AverageInit. LossCont. LossExcess RainIntensity#1#2#1#2#1#2(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)68.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.65068.10025.005.0005.0002.50070.90093.650 </td <td>AverageInit. LossCont. LossExcess RainPeakIntensity#1#2#1#2#1#2Inflow(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)(m^3/s)68.10025.005.0005.0002.50070.90093.6502.54668.10025.005.0005.0002.50070.90093.650.509368.10025.005.0005.0002.50070.90093.650.509368.10025.005.0005.0002.50070.90093.650.506668.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.6503.46968.10025.005.0005.0002.50070.90093.6501.64968.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.31168.10025.005.0005.0002.50070.90093.650.6082</td> <td>AverageInit. LossCont. LossExcess RainPeakTimeIntensity#1#2#1#2#1#2Inflowto(mm/h)(mm)(mm/h)(mm)(m^3/s)Peak68.10025.005.0005.0002.50070.90093.6502.54635.0068.10025.005.0005.0002.50070.90093.650.509329.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.700730.0068.10025.005.0005.0002.50070.90093.6501.64931.0068.10025.005.0005.0002.50070.90093.6501.64930.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.000</td>	AverageInit. LossCont. LossExcess RainPeakIntensity#1#2#1#2#1#2Inflow(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)(m^3/s)68.10025.005.0005.0002.50070.90093.6502.54668.10025.005.0005.0002.50070.90093.650.509368.10025.005.0005.0002.50070.90093.650.509368.10025.005.0005.0002.50070.90093.650.506668.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.6503.46968.10025.005.0005.0002.50070.90093.6501.64968.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.700768.10025.005.0005.0002.50070.90093.650.31168.10025.005.0005.0002.50070.90093.650.6082	AverageInit. LossCont. LossExcess RainPeakTimeIntensity#1#2#1#2#1#2Inflowto(mm/h)(mm)(mm/h)(mm)(m^3/s)Peak68.10025.005.0005.0002.50070.90093.6502.54635.0068.10025.005.0005.0002.50070.90093.650.509329.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.700730.0068.10025.005.0005.0002.50070.90093.6501.64931.0068.10025.005.0005.0002.50070.90093.6501.64930.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.0002.50070.90093.650.506629.0068.10025.005.0005.000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	32.00	13.45	41.00	11.38	32479.0	.0000	2312.5	1.3543

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
300 ° -		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

ROUTING INCREMENT (MINS)	H	1.00	
STORM DURATION (MINS)	=	180.	
RETURN PERIOD (YRS)	=	100.	
BX	=	1.0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREAS	(HA)	=	4.84
TOTAL OF ALL SUB-AREAS (F	IA)	=	44.26

Link	Average	Init.	Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Label	Intensity	/ #1	#2	#1	#2	#1	#2	Inflow	to	Lag
2020-	(mm/h)	(n	am)	(mm,	/h)	(mr	n)	(m^3/s)	Peak	(mins)
Д	44.500	25.00	5.000	5.000	2.500	95.667	121.37	2.110	46.00	.4000
B2	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.2629	43.00	.0000
BI	44.500	25.00	5.000	5.000	2.500	95.667	121.37	5.414	45.00	.7000
E2B	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.2629	43.00	.0000
E1B	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.3860	45.00	.7000
C1 ·	44.500	25.00	5.000	5.000	2.500	95.667	121.37	2.868	46.00	.0000
C	44.500	25.00	.0000	5.000	.0000	95.667	.000	8.282	46.00	1.300
D2	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.8817	41.00	.0000
E2A	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.2629	43.00	.0000
E1A	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.3860	45.00	1.500
 F	44.500	25.00	5.000	5.000	2.500	95.667	121.37	1.310	45.00	.0000
- D1	44.500	25.00	5.000	5.000	2.500	95.667	121.37	1.985	45.00	.0000
D	44.500	25.00	.0000	5.000	.0000	95.667	.000	9.595	47.00	.0000
G	44.500	25.00	5.000	5.000	2.500	95.667	121.37	.3139	36.00	.0000
BASIN	44.500	25.00	5.000	5.000	2.500	95.667	121.37	10.986	45.00	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total	~~~~~~~	Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
1020-	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	45.00	10.99	51.00	9.708	43575.8	.0000	1491.1	1.2058

Link	No.	s/D	Dia	Width	Pipe	Pipe
Label	of	Factor			Length	Slope
		(m)	(m)	(m)	(m)	(୫)
BASIN	2.0	2.000		.000	20.000	.2000

	1
heel	\bigcirc
	\sim

Link	Average	Init.	Loss	Cont.	Loss	Exces	s Rain	Peak	Time	Link
Label	Intensity	y #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(n	nm)	(mm,	/h)	(m	n)	(m^3/s)	Peak	(mins)
А	43.300	25.00	5.000	5.000	2.500	53.933	76.933	1.777	45.00	.4000
B2	43.300	25.00	5.000	5.000	2.500	53.933	76.933	.3933	35.00	.0000
Bl	43.300	25.00	5.000	5.000	2.500	53.933	76.933	4.543	45.00	.7000
E2B	43.300	25.00	5.000	5.000	2.500	53.933	76.933	.3909	35.00	.0000
E1B	43.300	25.00	5.000	5.000	2.500	53.933	76.933	.4720	35.00	.7000
C1	43.300	25.00	5.000	5.000	2.500	53.933	76.933	2.333	45.00	.0000
С	43.300	25.00	.0000	5.000	.0000	53.933	.000	6.864	46.00	1.300
D2	43.300	25.00	5.000	5.000	2.500	53.933	76.933	1.189	35.00	.0000
E2A	43.300	25.00	5.000	5.000	2,500	53.933	76.933	.3909	35.00	.0000
E1A	43.300	25.00	5.000	5.000	2.500	53.933	76.933	.4720	35.00	1.500
F	43.300	25.00	5.000	5.000	2.500	53.933	76.933	1.632	35.00	.0000
D1	43.300	25.00	5.000	5.000	2.500	53.933	76.933	2.089	35.00	.0000
D	43.300	25.00	.0000	5.000	.0000	53.933	.000	7.895	46.00	.0000
G	43.300	25.00	5.000	5.000	2.500	53.933	76.933	.4668	35.00	.0000
BASIN	43.300	25.00	5.000	5.000	2.500	53.933	76.933	8.904	43.00	.0000

SUMMARY OF BASIN RESULTS

.

Link	Time	Peak	Time	Peak	Total		Basin -		
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage	
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used	
BASIN	43.00	8.904	47.00	8.562	24952.0	.0000	1017.0	1.1098	

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
		(m)	(m)	(m)	(m)	(%).
BASIN	2.0	2.000		.000	20.000	.2000

Sheet 8

Link	Average	Init.	Loss	Cont.	Loss	Exces	s Rain	Peak	Time	Link
Label	Intensity	y #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(п	um)	(mm.	/h)	(mi	n)	(m^3/s)	Peak	(mins)
А	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.8727	49.00	.4000
B2	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.2249	36.00	.0000
B1	32.700	25.00	5.000	5.000	2,500	33.067	55.817	2.222	50.00	.7000
E2B	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.2199	36.00	.0000
E1B	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.2690	40.00	.7000
C1	32.700	25.00	5.000	5.000	2,500	33.067	55.817	1.150	46.00	.0000
C	32.700	25.00	.0000	5.000	.0000	33.067	.000	3.358	51.00	1.300
D2	32.700	25.00	5.000	5.000	2.500	33.067	55.817	. 6908	40.00	.0000
E2A	32.700	25.00	5,000	5.000	2.500	33.067	55.817	.2199	36.00	.0000
E1A	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.2690	40.00	1.500
F	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.9904	40.00	.0000
D1	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.9844	40.00	.0000
D	32.700	25.00	.0000	5.000	.0000	33.067	.000	3.882	48.00	.0000
G	32.700	25.00	5.000	5.000	2.500	33.067	55.817	.2619	38.00	.0000
BASIN	32.700	25.00	5.000	5.000	2.500	33.067	55.817	4.490	45.00	.0000

SUMMARY OF BASIN RESULTS

Jink	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
2012	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	45.00	4.489 4	16.00	4.405	15687.4	.0000	446.59	.7155

SUMMARY OF BASIN OUTLET RESULTS

Link	No.	S/D Factor	Dia	Width	Pipe	Pipe
Label	01	raccor (m)	(m)	(m)	(m)	(%) 210be
BASIN	2.0	2.000		.000	20.000	.2000

Run completed at: 4th August 2000 10:29:25

\frown			\square
>	ree	l	$ \bigcirc$

Link	Average	Init	. Loss	Cont.	Loss	Exces	s Rain	Peak	Time	Link
Label	Intensity	y #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(r	am)	(mm	/h)	(m	n)	(m^3/s)	Peak	(mins)
A	680.00	25.00	5.000	5.000	2.500	143.83	164.37	13.121	13.00	.4000
B2	680.00	25.00	5.000	5.000	2.500	143.83	164.37	2.029	5.000	.0000
B1	680.00	25.00	5.000	5.000	2.500	143.83	164.37	33.952	13.00	.7000
E2B	680.00	25.00	5.000	5.000	2.500	143.83	164.37	1.995	5.000	.0000
E1B	680.00	25.00	5.000	5.000	2.500	143.83	164.37	2.646	7.000	.7000
C1	680.00	25.00	5.000	5.000	2.500	143.83	164.37	17.309	13.00	.0000
С	680.00	25.00	.0000	5.000	.0000	143.83	.000	51.095	13.00	1.300
D2	680.00	25.00	5.000	5.000	2.500	143.83	164.37	6.464	7.000	.0000
E2A	680.00	25.00	5.000	5.000	2.500	143.83	164.37	1.995	5.000	.0000
E1A	680.00	25.00	5.000	5.000	2.500	143.83	164.37	2.646	7.000	1.500
F	680.00	25.00	5.000	5.000	2.500	143.83	164.37	10.244	7.000	.0000
D1	680.00	25.00	5.000	5.000	2.500	143.83	164.37	18.724	7.000	.0000
D	680.00	25.00	.0000	5.000	.0000	143.83	.000	62.199	14.00	.0000
G	680.00	25.00	5.000	5.000	2.500	143.83	164.37	2.407	5.000	.0000
BASIN	680.00	25.00	5.000	5.000	2.500	143.83	164.37	65.182	13.00	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	13.00	65.18	16.00	55.66	64326.1	.0000	21485.1	2.9751

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

ROUTING INCREMENT (MINS)	=	1.00	
STORM DURATION (MINS)	=	30.	
RETURN PERIOD (YRS)	<u></u>	1030.	
BX	=	1.0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREA	S (HA)	=	4.84
TOTAL OF ALL SUB-AREAS ()	HA)	=	44.26

Link	Average	Init.	Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Label	Intensity	/ #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(m	m)	(mm	/h)	(mn	n)	(m^3/s)	Peak	(mins)
А	480.00	25.00	5.000	5.000	2.500	212.75	233.75	12.573	17.00	.4000
B2	480.00	25.00	5.000	5.000	2.500	212.75	233.75	1.523	7.000	.0000
B1	480.00	25.00	5.000	5.000	2.500	212.75	233.75	33.280	17.00	.7000
E2B	480.00	25.00	5.000	5.000	2.500	212.75	233.75	1.516	7.000	.0000
E1B	480.00	25.00	5.000	5.000	2.500	212.75	233.75	2.083	10.00	.7000
C1	480.00	25.00	5.000	5.000	2.500	212.75	233.75	17.217	18.00	.0000
C	480.00	25.00	.0000	5.000	.0000	212.75	.000	50.498	18.00	1.300
D2	480.00	25.00	5.000	5.000	2.500	212.75	233.75	4.917	9.000	.0000
E2A	480.00	25.00	5.000	5.000	2.500	212.75	233.75	1.516	7.000	.0000
E1A	480.00	25.00	5.000	5.000	2.500	212.75	233.75	2.083	10.00	1.500
 7	480.00	25.00	5.000	5.000	2.500	212.75	233.75	7.472	10.00	.0000
- D1	480.00	25.00	5.000	5.000	2.500	212.75	233.75	15.456	13.00	.0000
 -	480.00	25.00	.0000	5.000	.0000	212.75	.000	63.270	19.00	.0000

ROUTING INCREMENT (MINS)	=	1.00	
STORM DURATION (MINS)	=	60.	
RETURN PERIOD (YRS)	=	1060.	
BX	=	1,0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREAS	S (HA)	=	4.84
TOTAL OF ALL SUB-AREAS (H	HA)	-	4426

.00

Average	Init.	. Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Intensity	/ #1	#2	#1	#2	#1	#2	Inflow	to	Lag
(mm/h)	(I	nm)	(mm,	/h)	(mr	n)	(m^3/s)	Peak	(mins)
370.00	25.00	5.000	5.000	2.500	340.33	362.54	11.224	22.00	.4000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	1.281	9.000	.0000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	29.824	22.00	.7000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	1.272	9.000	.0000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	1.650	14.00	.7000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	15.688	27.00	.0000
370.00	25.00	.0000	5.000	.0000	340.33	.000	45.469	22.00	1.300
370.00	25.00	5.000	5.000	2.500	340.33	362.54	3.958	10.00	.0000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	1.272	9.000	.0000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	1.650	14.00	1.500
370.00	25.00	5.000	5.000	2,500	340.33	362.54	5.649	12.00	.0000
370.00	25.00	5.000	5.000	2,500	340.33	362.54	12.672	21.00	.0000
370.00	25.00	.0000	5.000	.0000	340.33	.000	57.162	27.00	.0000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	1.531	9.000	.0000
370.00	25.00	5.000	5.000	2.500	340.33	362.54	60.243	27.00	.0000
	Average Intensity (mm/h) 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00 370.00	Average Init Intensity #1 (mm/h) (m 370.00 25.00 370.00 25.00	Average Init. Loss Intensity #1 #2 (mm/h) (mm) 370.00 25.00 5.000 370.00 25.00 5.000	Average Init. Loss Cont. Intensity #1 #2 #1 (mm/h) (mm) (mm,) 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00 5.000 370.00 25.00	AverageInit. LossCont. LossIntensity#1#2#1#2(mm/h)(mm)(mm/h)370.0025.005.0005.000370.0025.005.0005.000370.0025.005.0002.500	AverageInit. LossCont. LossExcessIntensity#1#2#1#2#1(mm/h)(mm)(mm/h)(mm370.0025.005.0005.0002.500340.33370.0025.005.0002.500370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0005.0002.500370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33370.0025.005.0002.500340.33 <trr>370.0025.00</trr>	AverageInit. LossCont. LossExcess RainIntensity#1#2#1#2#1#2(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)370.0025.005.0002.500340.33362.54370.0025.005.0002.500340.33362.54370.0025.005.0002.500340.33362.54370.0025.005.0002.500340.33362.54370.0025.005.0002.500340.33362.54370.0025.005.0002.500340.33362.54370.0025.005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.0002.500340.33362.54370.0025.005.0005.000340.33362.54370	AverageInit. LossCont. LossExcess RainPeakIntensity#1#2#1#2#1#2Inflow(mm/h)(mm)(mm/h)(mm)(mm/h)(mm)(m^3/s)370.0025.005.0002.500340.33362.5411.224370.0025.005.0002.500340.33362.541.281370.0025.005.0002.500340.33362.541.272370.0025.005.0002.500340.33362.541.272370.0025.005.0002.500340.33362.541.650370.0025.005.0002.500340.33362.541.5688370.0025.005.0005.0002.500340.33362.541.272370.0025.005.0005.0002.500340.33362.541.568370.0025.005.0005.0002.500340.33362.541.272370.0025.005.0005.0002.500340.33362.541.272370.0025.005.0005.0002.500340.33362.541.650370.0025.005.0005.0002.500340.33362.541.650370.0025.005.0005.0002.500340.33362.541.627370.0025.005.0005.0002.500340.33362.5412.672370.0025.005.0005.000340.3	AverageInit. LossCont. LossExcess RainPeakTimeIntensity#1#2#1#2#1#2Inflowto(mm/h)(mm)(mm/h)(mm)(mm)(m^3/s)Peak370.0025.005.0002.500340.33362.5411.22422.00370.0025.005.0002.500340.33362.541.2819.000370.0025.005.0002.500340.33362.541.2729.000370.0025.005.0002.500340.33362.541.65014.00370.0025.005.0002.500340.33362.541.568827.00370.0025.005.0005.0002.500340.33362.541.568827.00370.0025.005.0005.0002.500340.33362.541.2729.000370.0025.005.0005.0002.500340.33362.541.2729.000370.0025.005.0005.0002.500340.33362.541.2729.000370.0025.005.0005.0002.500340.33362.541.2729.000370.0025.005.0005.0002.500340.33362.541.2729.000370.0025.005.0005.0002.500340.33362.541.2729.000370.0025.005.0005.0002.500340.33362.541.267

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin ·	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	27.00	60.24	28.00	59.77	151603.	.0000	21812.	1 3.0026

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope	
2000-0-		(m)	(m)	(m)	(m)	(%)	
BASIN	2.0	2.000		.000	20.000	.2000	

Input Version number = 400

ROUTING INCREMENT (MINS)	=	2.50	
STORM DURATION (MINS)	=	970.	
RETURN PERIOD (YRS)	=	8801.	
BX	=	1.0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREAS	5 (HA)	=	4.84
TOTAL OF ALL SUB-AREAS (H	HA)	=	44.26

	SUMMARY OF C	CATCHMEN	IT AND I	RAINFAI	LL DATA						
Link	Catch.	Area	Slo	ope	% Impe:	rvious	Pe	ern	I	3	Link
Labe	1 #1	#2	#1	#2	#1	#2	#1	#2	#1	#2	No.
	(hect	ares)	(!	8)		(%)					
А	7.990	.1100	20.90	20.90	.1000	99.90	.080	.015	.0413	.0001	1.000
B2	.4300	.3500	23.10	23.10	.1000	99.90	.025	.015	.0035	.0002	2.000
в1	12.500	.3300	23.10	23.10	.1000	99.90	.080	.015	.0495	.0002	1.001
E2B	.4300	.3500	20.70	20.70	.1000	99.90	.025	.015	.0037	.0002	3.000
E1B	.3500	.0200	20.70	20.70	.1000	99.90	.080	.015	.0082	0.000	3.001
C1	10.120	,2000	20.00	20.00	.1000	99.90	.080	.015	.0477	.0001	3.002
с	.00100	.000	20.00	.0000	.1000	.0000	.080	.00	.0004	.0000	1.002
D2	1.440	1.180	17.00	17.00	.1000	99.90	.025	.015	.0076	.0004	4.000
E2A	.4300	.3500	20.70	20.70	.1000	99.90	.025	.015	.0037	.0002	5.000
E1A	.3500	.0200	20,70	20.70	.1000	99.90	.080	.015	.0082	0.000	5.001
F	1.510	1.240	19.50	19.50	.1000	99.90	.025	.015	.0073	.0004	5.002
D1	2.970	.1700	17.00	17.00	.1000	99.90	.080	.015	.0273	.0001	4.001
D	.00100	.000	17.00	.0000	.1000	.0000	.080	.00	.0004	.0000	1.003
G	.5100	.4200	24.00	24.00	.1000	99.90	.025	.015	.0037	.0002	6.000
BASIN	.3900	.1000	1.700	1.700	.1000	99.90	.025	.015	.0122	.0003	1.004

Sheet 16

Link	Average	Init.	Loss	Cont.	Loss	Excess	s Rain	Peak	Time	Link
Label	Intensity	/ #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(n	um)	(mm	/h)	(mr	n)	(m^3/s)	Peak	(mins)
А	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.8508	2423.	.4000
B2	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.1249	2415.	.0000
B1	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	2.202	2423.	.7000
E2B	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.1246	2415.	.0000
E1B	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.1707	2415.	.7000
C1	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	1.134	2423.	.0000
C	-1.000	25.00	.0000	5.000	.0000	216.65	.000	3.336	2423.	1.300
D2	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.4024	2415.	.0000
E2A	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.1246	2415.	.0000
E1A	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.1707	2415.	1.500
F	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	.5959	2415.	.0000
D1	-1.000	25.00	5,000	5.000	2.500	216.65	281.15	.7251	2415.	.0000
D	-1.000	25.00	.0000	5.000	.0000	216.65	.000	3.984	2415.	.0000
G	-1.000	25.00	5,000	5.000	2.500	216.65	281.15	.1502	2415.	.0000
BASIN	-1.000	25.00	5.000	5.000	2.500	216.65	281.15	4.787	2415.	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -	
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used
BASIN	2415.	4.786	2423.	4.553	98859.4	.0000	461.09	.7309

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
		(m)	(m)	(m)	(m)	(%)
BASIN	2.0	2.000		.000	20.000	.2000

Link	Average	Init	. Loss	Cont.	Loss	Exces	s Rain	Peak	Time	Link
Label	Intensit	y #1	#2	#1	#2	#1	#2	Inflow	to	Lag
	(mm/h)	(r	nm)	(mm	/h)	(m	n)	(m^3/s)	Peak	(mins
A	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.7967	2810.	.4000
B2	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.0956	2810.	.0000
В1	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	2.136	2810.	.7000
E2B	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.0953	2810.	.0000
E1B	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.1347	2810.	.7000
C1	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	1.129	2810.	.0000
С	-1.000	25.00	.0000	5.000	.0000	91.667	.000	3.265	2810.	1.300
D2	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.3123	2810.	.0000
E2A	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.0953	2810.	.0000
E1A	-1.000	25.00	5.000	5.000	2,500	91.667	137.92	.1347	2810.	1.500
F	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.4628	2810.	.0000
D1	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.6266	2810.	.0000
D	-1.000	25.00	.0000	5.000	.0000	91.667	.000	3.891	2810.	.0000
G	-1.000	25.00	5.000	5.000	2.500	91.667	137.92	.1141	2810.	.0000
BASIN	-1.000	25.00	5.000	5.000	2,500	91.667	137.92	4.521	2810.	.0000

SUMMARY OF BASIN RESULTS

Link	Time	Peak	Time	Peak	Total		Basin -		
Label	to	Inflow	to	Outflow	Inflow	Vol.	Vol.	Stage	
	Peak	(m^3/s)	Peak	(m^3/s)	(m^3)	Avail	Used	Used	
BASIN	2810.	4.520	2810.	4.366	42705.3	.0000	442.77	.7114	

SUMMARY OF BASIN OUTLET RESULTS

Link Label	No. of	S/D Factor	Dia	Width	Pipe Length	Pipe Slope
		(m)	(m)	(m)	(m)	(원)
BASIN	2.0	2.000		.000	20.000	.2000

ROUTING INCREMENT (MINS)	=	7.50	
STORM DURATION (MINS)	= .	3615.	
RETURN PERIOD (YRS)	=	9002.	
BX	= .	1.0000	
TOTAL OF FIRST SUB-AREAS	(HA)	=	39.42
TOTAL OF SECOND SUB-AREAS	5 (HA)	=	4.84
TOTAL OF ALL SUB-AREAS (1	HA)	=	44.26

APPENDIX E

BRIDGE AND CULVERT STRUCTURES

APPENDIX F

SURVEYED CROSS SECTIONS AND FLOOD ELEVATIONS

5

SECTION No.7

OF BIT Ь BG 15 6.434 16.286 6.411 23.408 2.982 25.67 2.136 26.694 3.375 30 4.286 EXISTING 6.577 6.51 6.46 6.211 5.83 5.58 LEVEL 36.794 E 0 4,98 10.4 88 CHAINAGE

SECTION No.8

1

.

HIGH NEW ROAD	EDGE OF BIT		EDGE OF BIT	
EXISTING	9.111 9.24	9.28	9.31	000 0
CHAINAGE	0 5.227	7.81	10.13	ų

NOTE

FLOOD EXTENTS ARE APPROXIMATE ONLY. NO ACCOUNT OF LOCALISED BLOCKING OF EXISTING STRUCTURES HAS BEEN MADE.

TURO CREEK FLOOD STUDY SURVEYED CROSS SECTIONS & ESTIMATED FLOOD ELEVATIONS sheet 2 of 2

		20% AEP TAILWATER
5		5% AEP TAILWATER
	<u> </u>	1% AEP TAILWATER
		PMF TAILWATER
	RL 3.36n	SURVEYED HOUSE FLOOR LEVEL

<u>LEGEND</u>

SECTION No.10

APPENDIX G

TIDAL SENSITIVITY ANALYSIS

	-	_					_		T		1	- 1			_						- 1	- 1		1	- 1	- 1		
20% AEP	with 0.45m	l ailwater	4.51	4.29	4.13	3.16	3.16	3.13	3.13	3.12	2.49	2.50	2.39	2.39	2.34	2.32	2.18	2.16	1.76	1.75	1.52	1.49	1.45	1.08	0.82	0.77	0.45	0.45
20% AEP	with 0.50m	Tailwater	4.51	4.29	4.13	3.16	3.16	3.14	3.13	3.12	2.50	2.50	2.39	2.39	2.34	2.32	2.18	2.16	1.76	1.75	1.50	1.47	1.43	1.05	0.78	0.72	0.50	0.50
5% AEP	with 0.50m	Tailwater	4.79	4.51	4.52	3.49	3.49	3.43	3.42	3.37	3.05	3.06	2.67	2.64	2.57	2.55	2.37	2.32	1.99	1.97	1.75	1.66	1.64	1.51	1.11	1.03	0.50	0.50
5% AEP	with 0.80m	Tailwater	4.79	4.50	4.51	3.48	3.48	3.43	3.42	3.37	3.05	3.05	2.67	2.63	2.57	2.55	2.37	2.32	1.99	1.97	1.75	1.66	1.65	1.53	1.15	1.08	0.80	0.80
1% AEP	with 0.5m	Tailwater	5.10	4.75	4.76	3.66	3.66	3.57	3.55	3.47	3.33	3.34	2.83	2.79	2.72	2.69	2.52	2.46	2.15	2.12	1.93	1.74	1.72	1.61	1.51	1.37	0.52	0.50
1% AEP	with 1.25m	Tailwater	5.10	4.75	4.76	3.66	3.66	3.57	3.55	3.47	3.33	3.34	2.83	2.79	2.72	2.69	2.53	2.47	2.16 4	2.12	1.93	1.75	1.73	1.64	1.59	1.47	1.25	1.25
1% AEP	with 1.60m	Tailwater	5.10	4.75	4.76	3.66	3.66	3.57	3.55	3.47	3.33	3.34	2.83	2.79	2.72	2.69	2.53	2.47	2.16	2.13	1.95	1.78	1.76	1.70	1.67	1.61	1.60	1.60
1% AEP	with 1.95m	Tailwater	5.10	4.75	4.76	3.66	3.66	3.57	3.55	3.47	3.33	3.34 .	2.83	2.79	2.72	2.70	2.55	2.50	2.23	2.21	2.07	1.97	1.97	1.96	1.95	1.95	1.95	1.95 🦽
PMF with	1.25m	Tailwater	6.23	5.91	5.92	4.58	4.59	4.44	4.31	4.09	3.95	3.95	3.50	3.44	3.34	3.29	3.11	3.04	2.77	2.73	2.53	2.22	2.18	2.09	2.00	1.69	1.25	1.25
PMF with	1.60m	Tailwater	6.23	5.91	5.92	4.58	4.59	4.44	4.31	4.09	3.95	3.95	3.50	3.44	3.34	3.29	3.11	3.04	2.77	2.73	2.53	2.22	2.18	2.09	2.00	1.70	1.60	1.60
PMF with	1.95m	Tailwater	6.23	5.91	5.92	4.58	4.59	4 44	4.31	4.09	3.95	3.95	3.50	3.44	3.34	3 29	3 11	3.04	2.77	2.73	2.54	2.26	2.22	2.14	2.07	1.95	1.95	1.95
	Node		10	2 0	ρα	2	- 17	2 C	99										ED E			2	10	CD		. a		OUT

END